

# Vandex



# Crowdsourcing Natural Language Data at Scale: A Hands-On Tutorial

Alexey Drutsa, Dmitry Ustalov, Valentina Fedorova, Olga Megorskaya, Daria Baidakova

NAACL-HLT 2021 hands-on tutorial

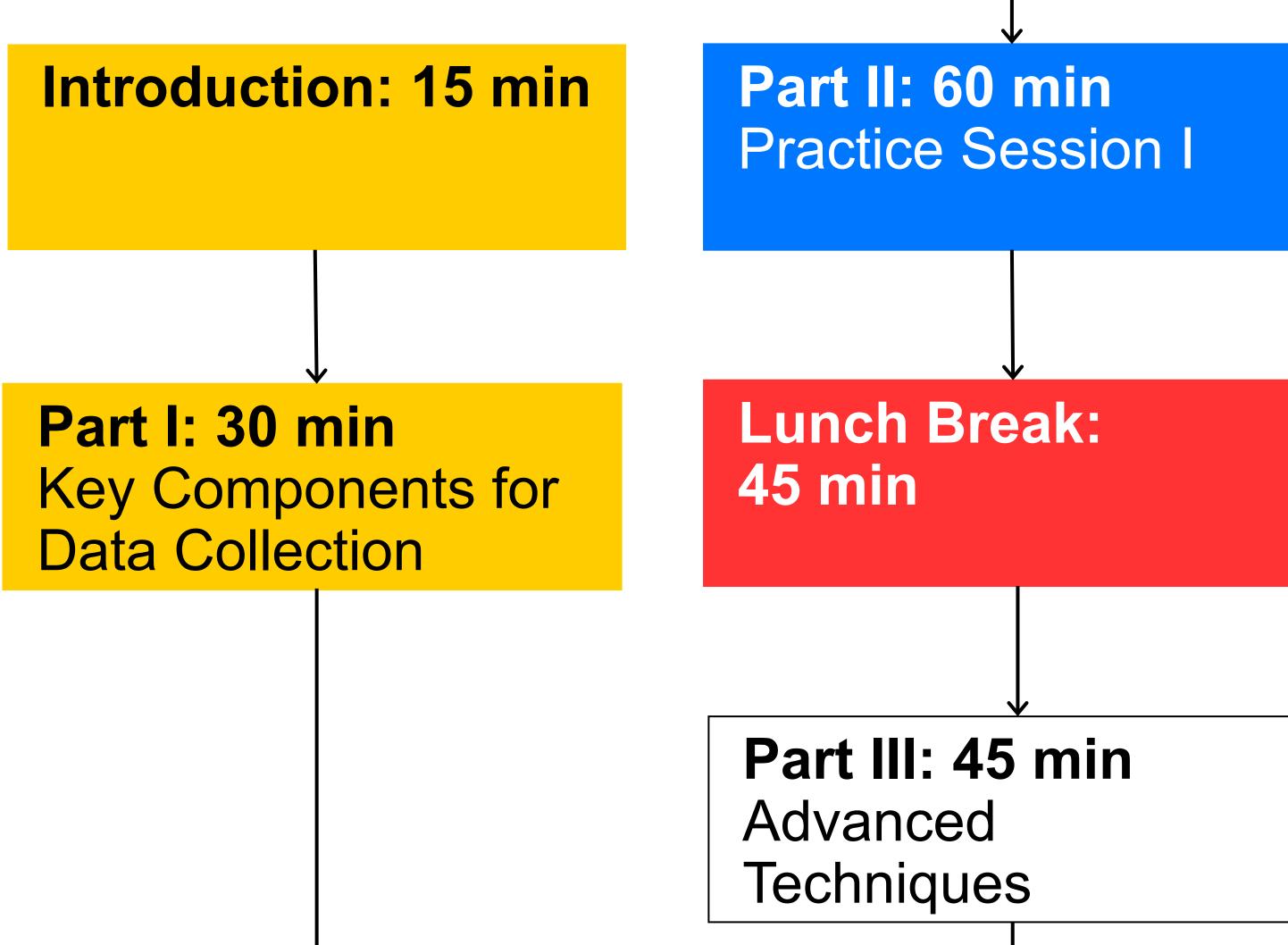
#### Part III:

# Advanced Techniques

Dmitry Ustalov, Analyst/Software Developer Crowdsourcing Research Group



#### **Tutorial Schedule**

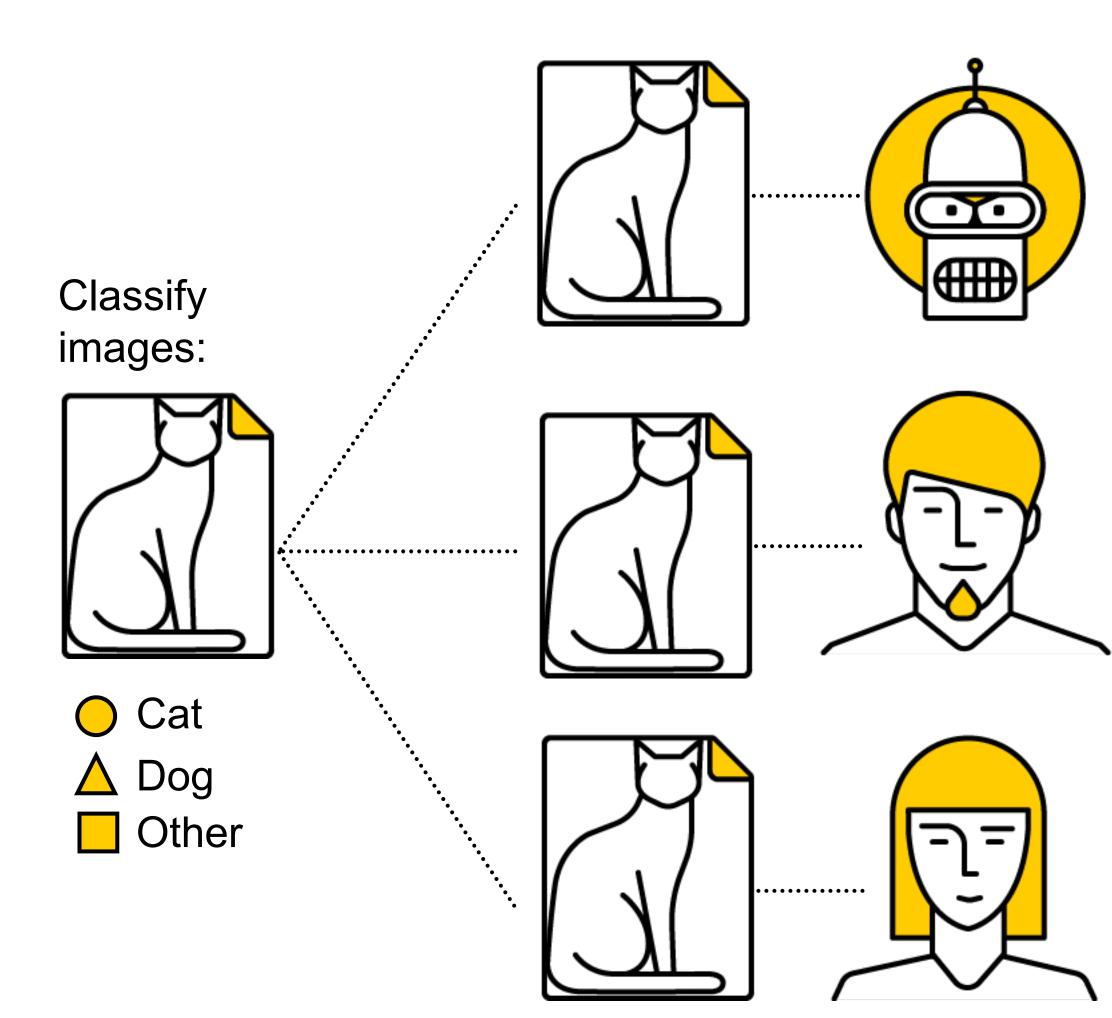


#### Part IV: 30 min **Practice Session II**

#### Part V: 15 min Conclusion



#### Labeling data with crowdsourcing

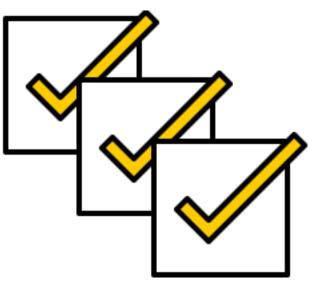


How to choose a reliable label? >

- How many labels per object?
- How much to pay for labels? >



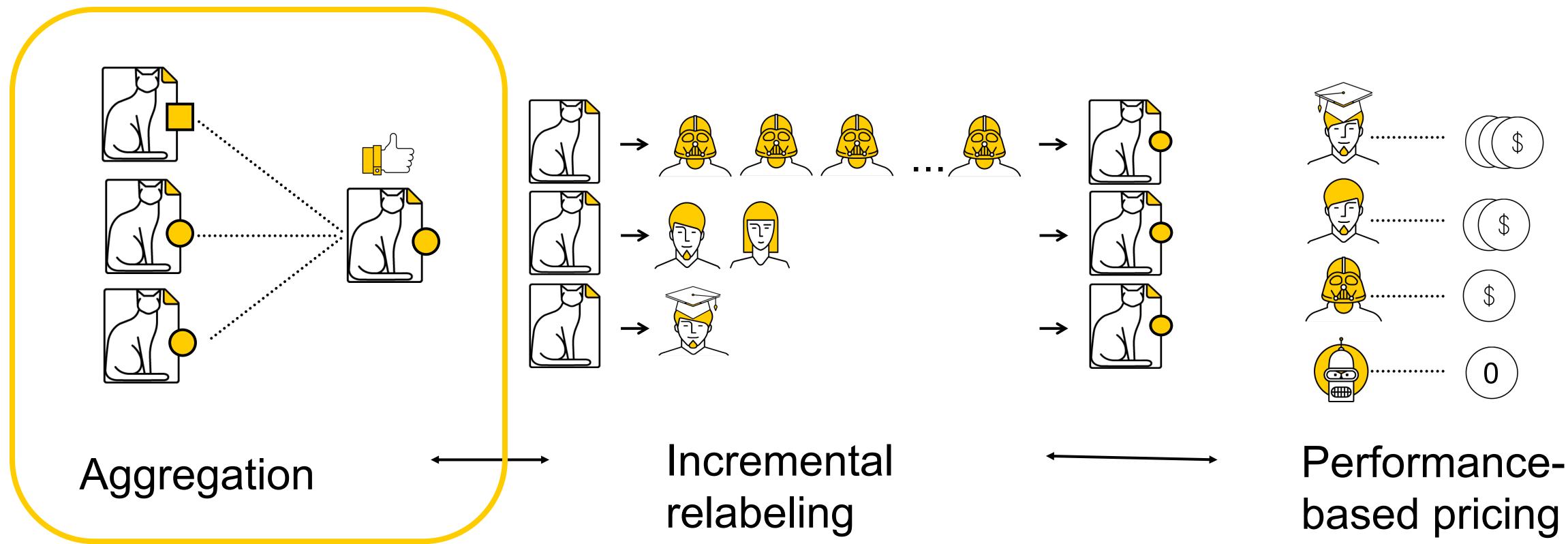
# **Evaluation of labeling approaches** Cost Accuracy VS



#### Labels with a maximal level of accuracy for a given budget or Labels of a <u>chosen accuracy level</u> for a <u>minimal budget</u>

 $\mathbf{Q}$ 

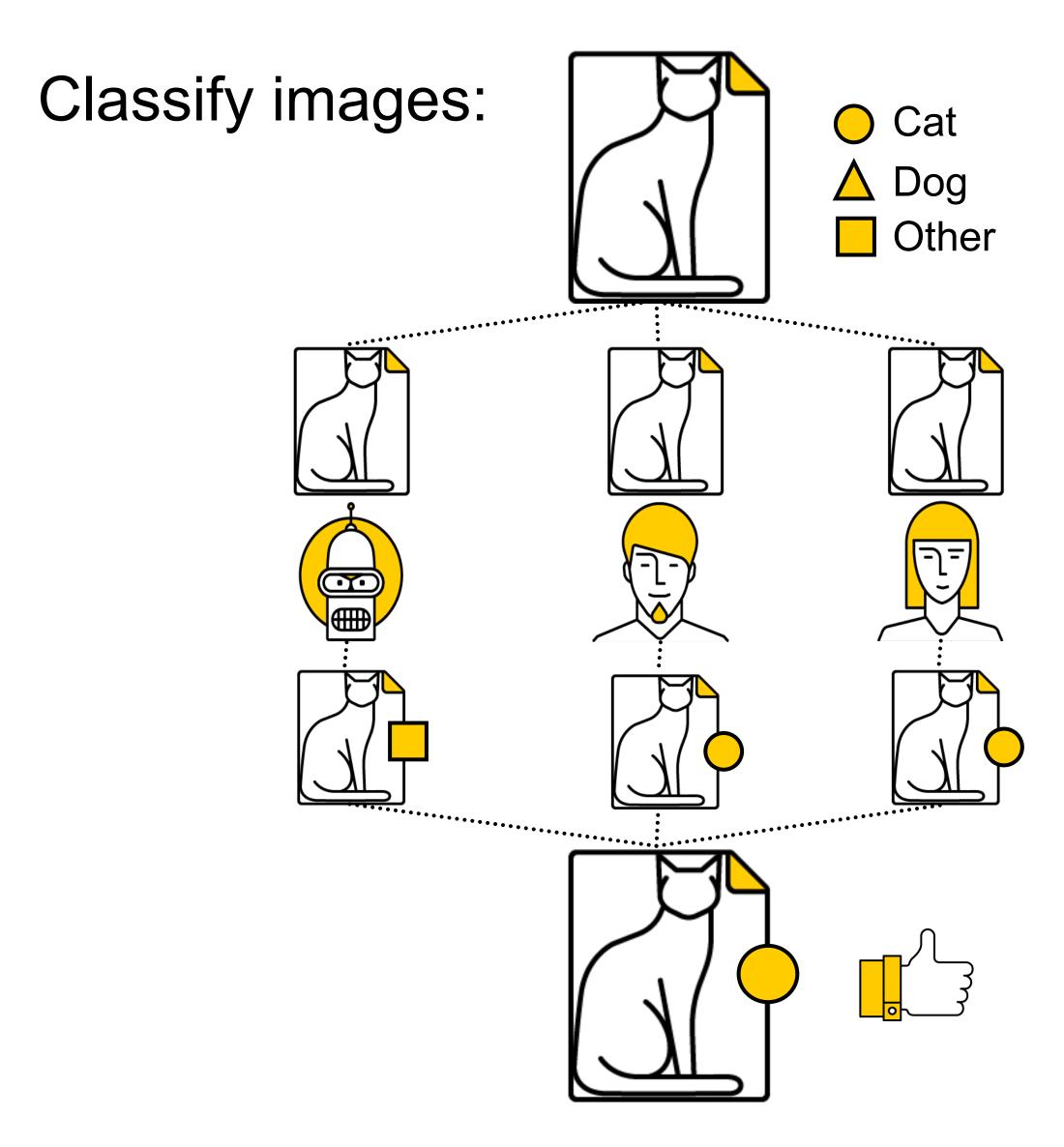
### Key components of labeling with crowds



based pricing

Aggregation

### Labeling data with crowds



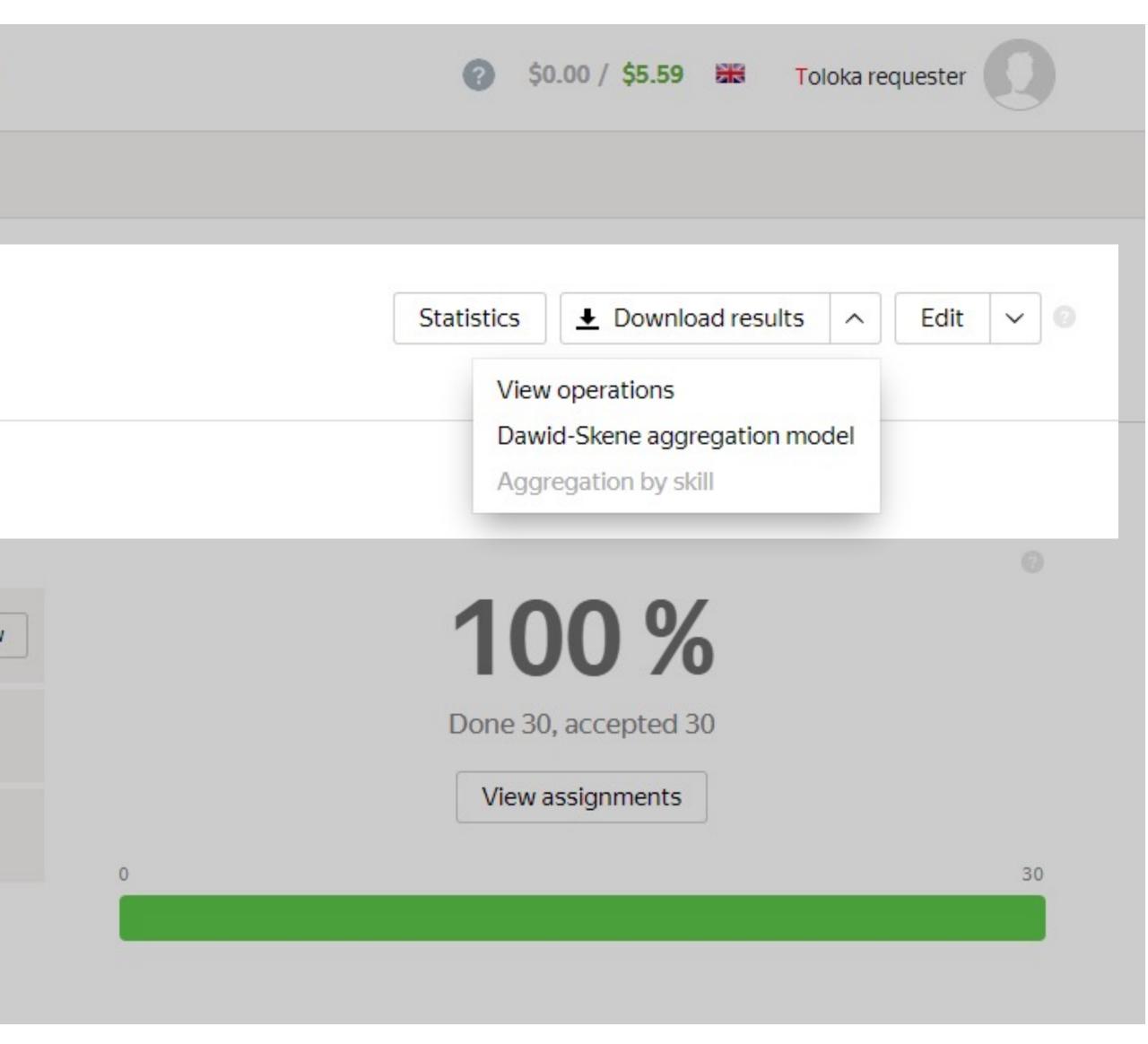
Upload multiple copies of each object to label

Performers assign noisy labels to objects

Aggregate multiple labels for each object into a more reliable one

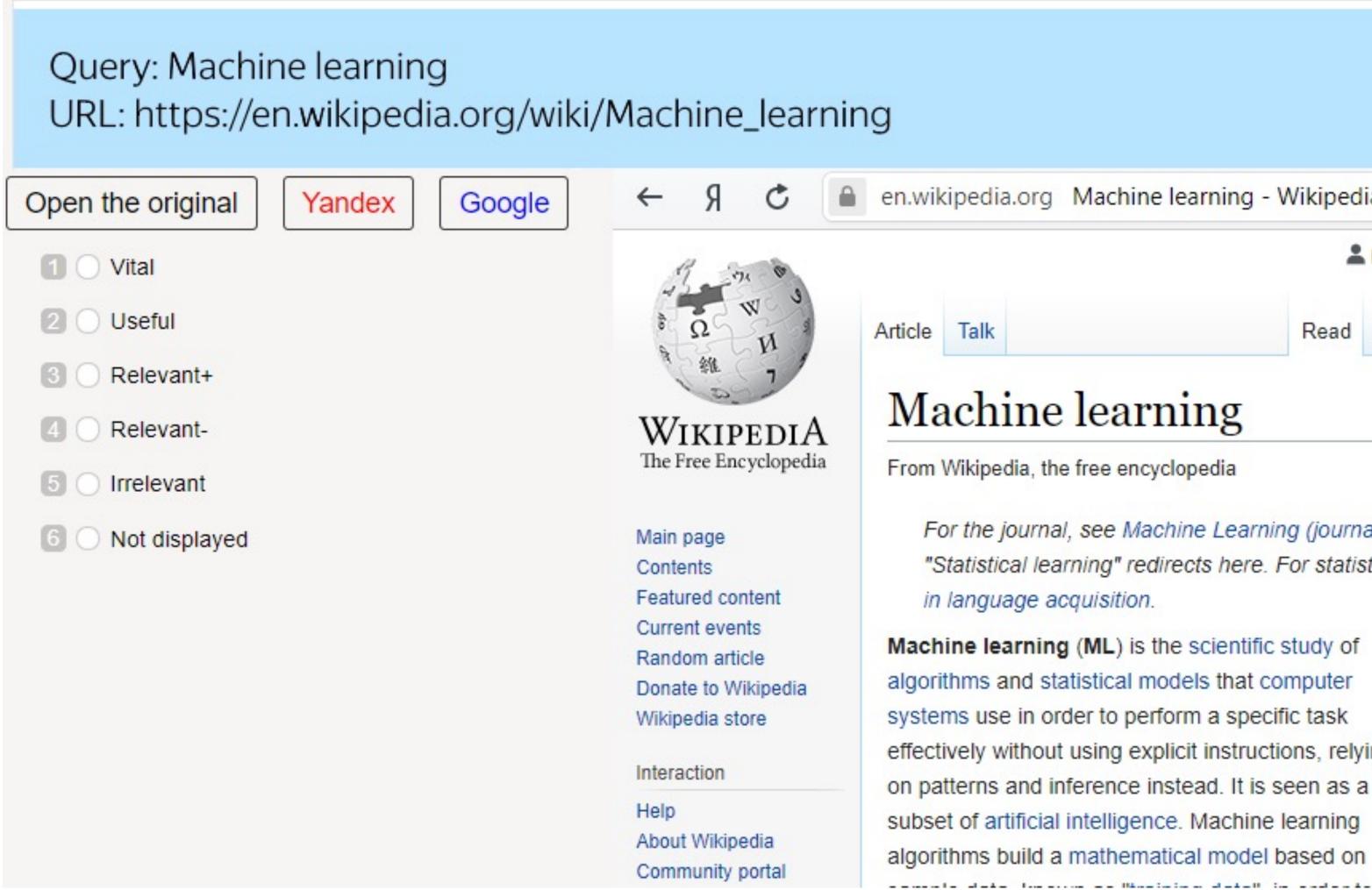
#### **Process results**

| <b>Yandex</b> Toloka              | Projects         | Users      | Skills          | Profile | Messages  |
|-----------------------------------|------------------|------------|-----------------|---------|-----------|
| Projects  Does the image contain  | ns traffic light | s? → poo   | Ê               |         |           |
| pool – clo                        | osed             |            |                 |         |           |
| POOL TASKS (File example for task | uploading (ts    | v, UTF-8)) |                 |         |           |
| ▲ Upload 🖺 files                  |                  | Edit       |                 |         | • Preview |
| 30 task<br>suites                 |                  | <b>0</b> t | raining<br>ask  |         |           |
| 90 tasks                          |                  | 10         | control<br>task |         |           |
|                                   |                  |            |                 |         |           |



**Multiclass labels** 

### Multiclassification

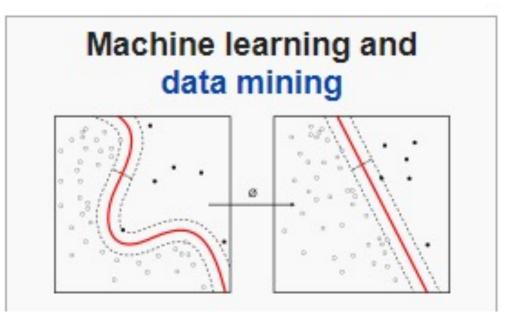


|        | +    | Not log | gged in Talk Co | ontributions Create account | Log in |
|--------|------|---------|-----------------|-----------------------------|--------|
| e Talk | Read | Edit    | View history    | Search Wikipedia            | Q      |

From Wikipedia, the free encyclopedia

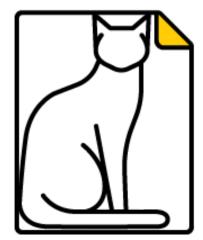
For the journal, see Machine Learning (journal). "Statistical learning" redirects here. For statistical learning in linguistics, see statistical learning in language acquisition.

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use in order to perform a specific task effectively without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on

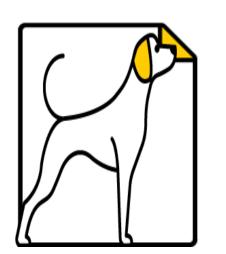


#### Notation

- Categories  $k \in \{1, ..., K\}$ . E.g.: O Cat  $\triangle$  Dog  $\Box$  Other
- > Objects  $j \in \{1, ..., J\}$ . E.g.:



- > Performers:  $w \in \{1, ..., W\}$ . E.g.:  $\bigoplus$ 
  - $W_j \subseteq \{1, ..., W\}$  performers labeled object j

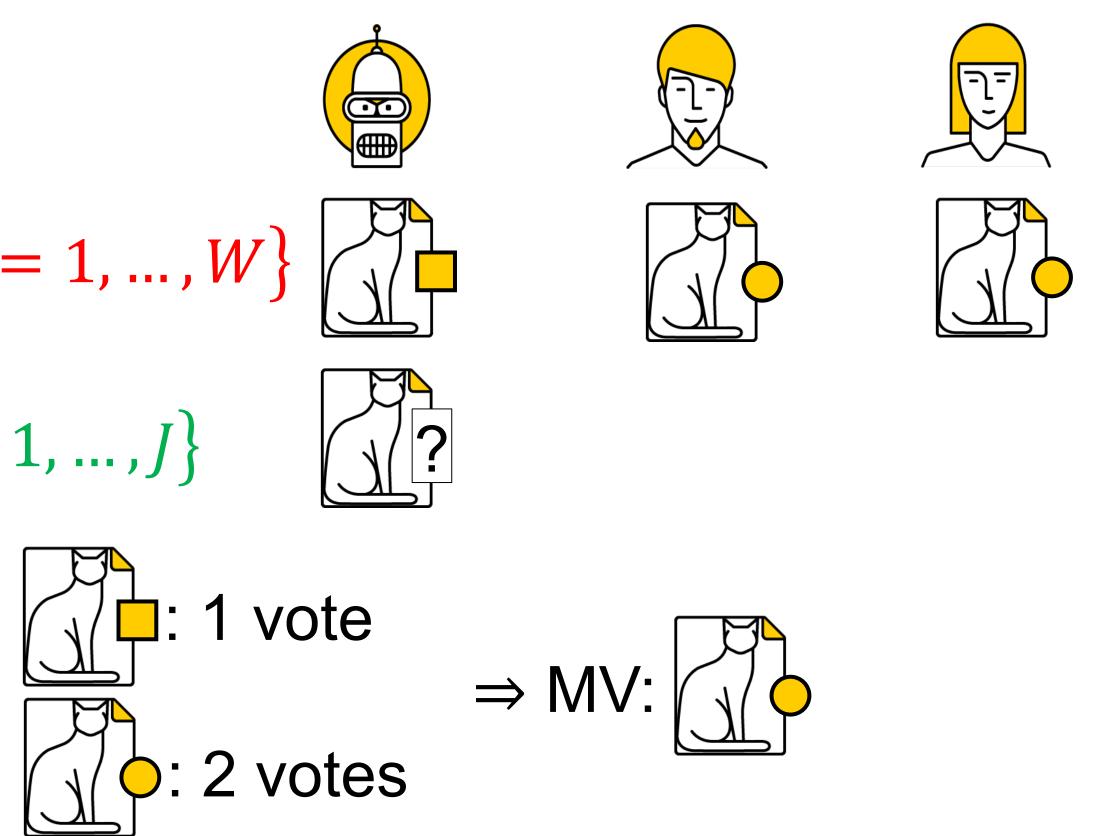






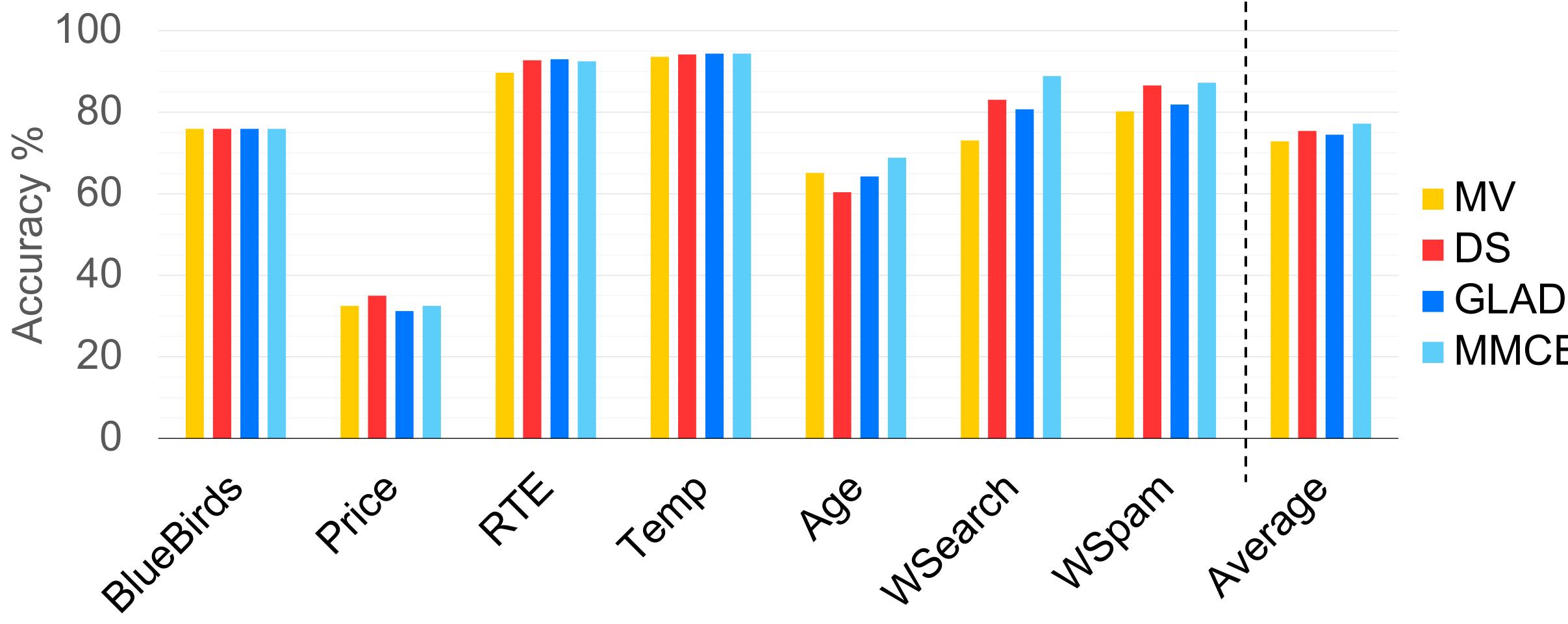
# The simplest aggregation: Majority Vote (MV)

- The problem of aggregation:
  Observe noisy labels
  y = {y<sub>j</sub><sup>w</sup> | j = 1, ..., J and w = 1, ..., W}
- > Recover true labels  $\mathbf{z} = \{z_j | j = 1, ..., J\}$ A straightforward solution:



 $\hat{z}_{j}^{MV} = \arg \max_{y=1,...,K} \sum_{w \in W_{j}} \delta(y = y_{j}^{W})$ , where  $\delta(A) = 1$  if A is true and 0 otherwise

#### **Performance of MV vs other methods**

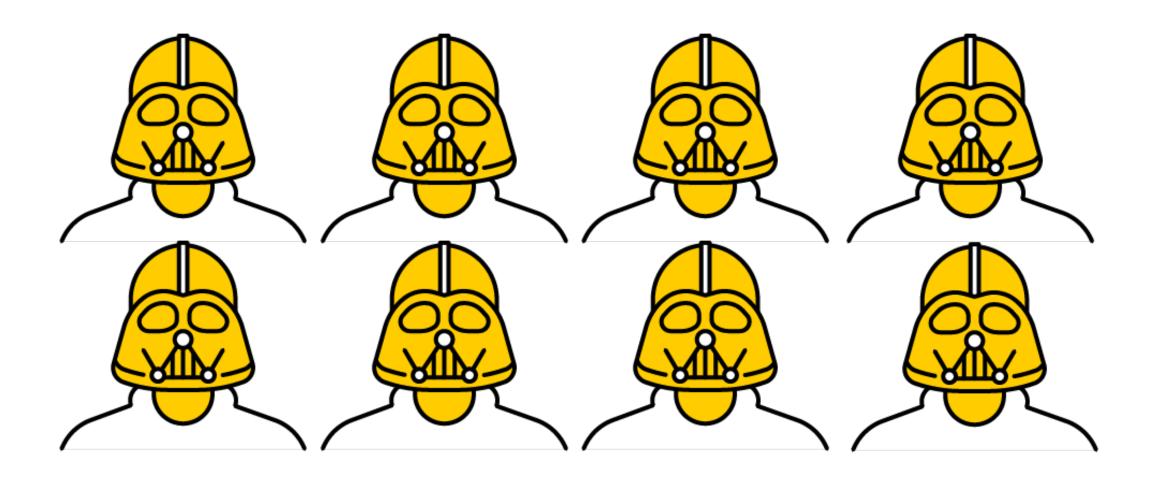


Zhou D. et al. Regularized minimax conditional entropy for crowdsourcing. 2015

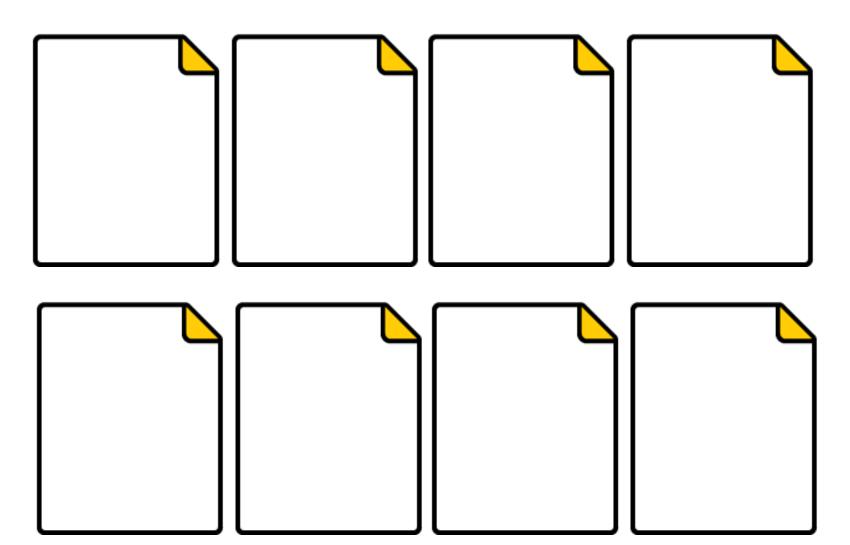


#### **Properties of MV**

> All performers are treated similarly

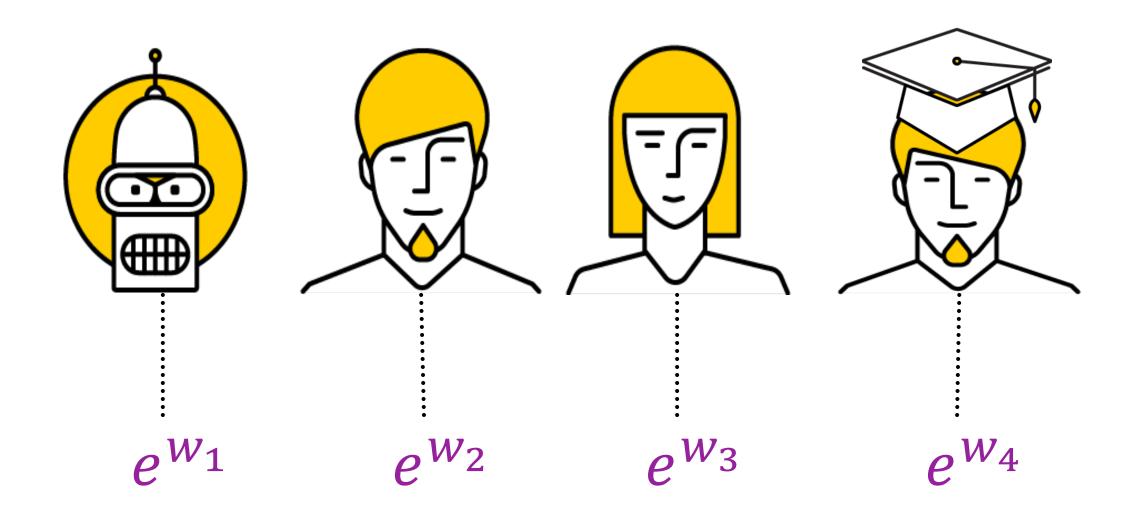


#### All objects are treated similarly

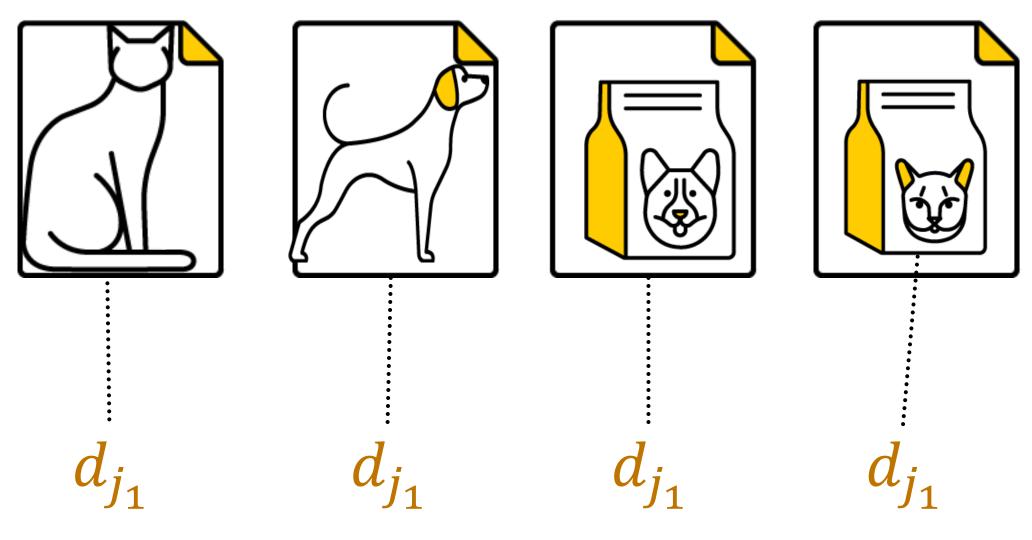


#### Advanced aggregation: performers and objects

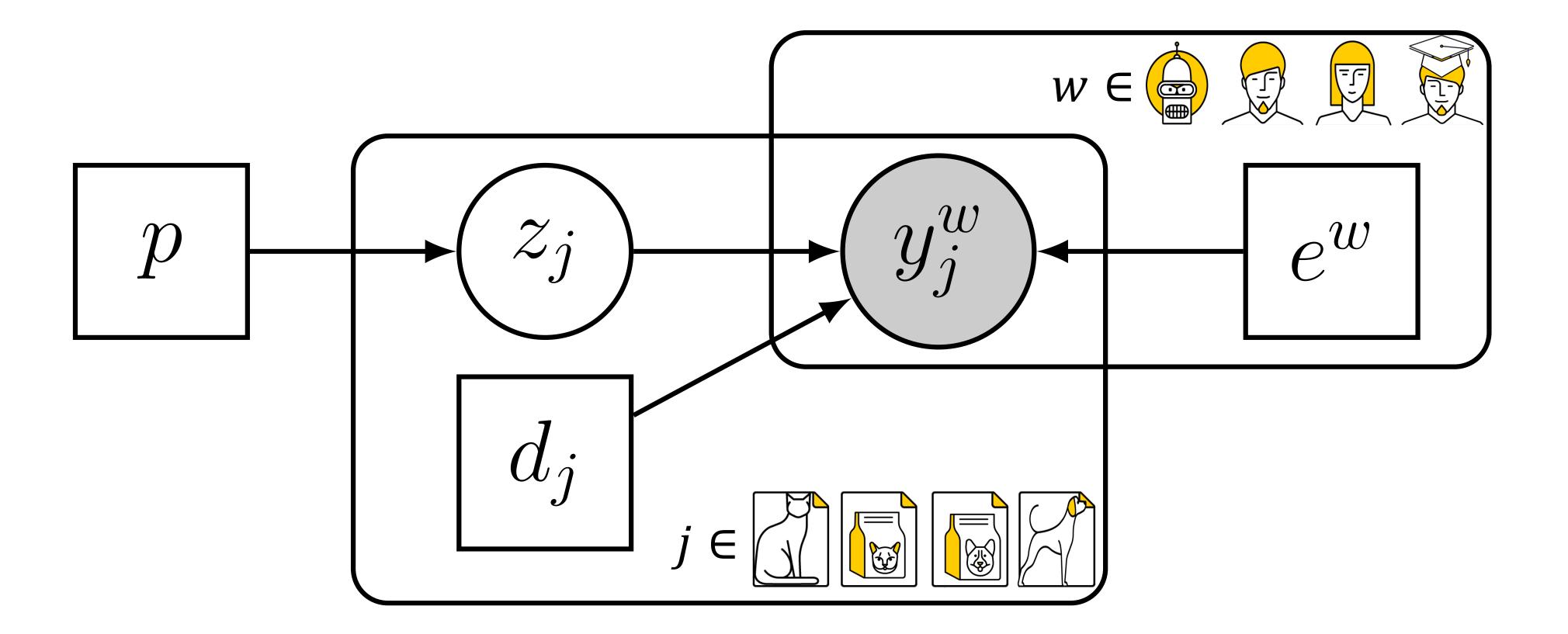
 Parameterize expertise of performers by e<sup>w</sup>



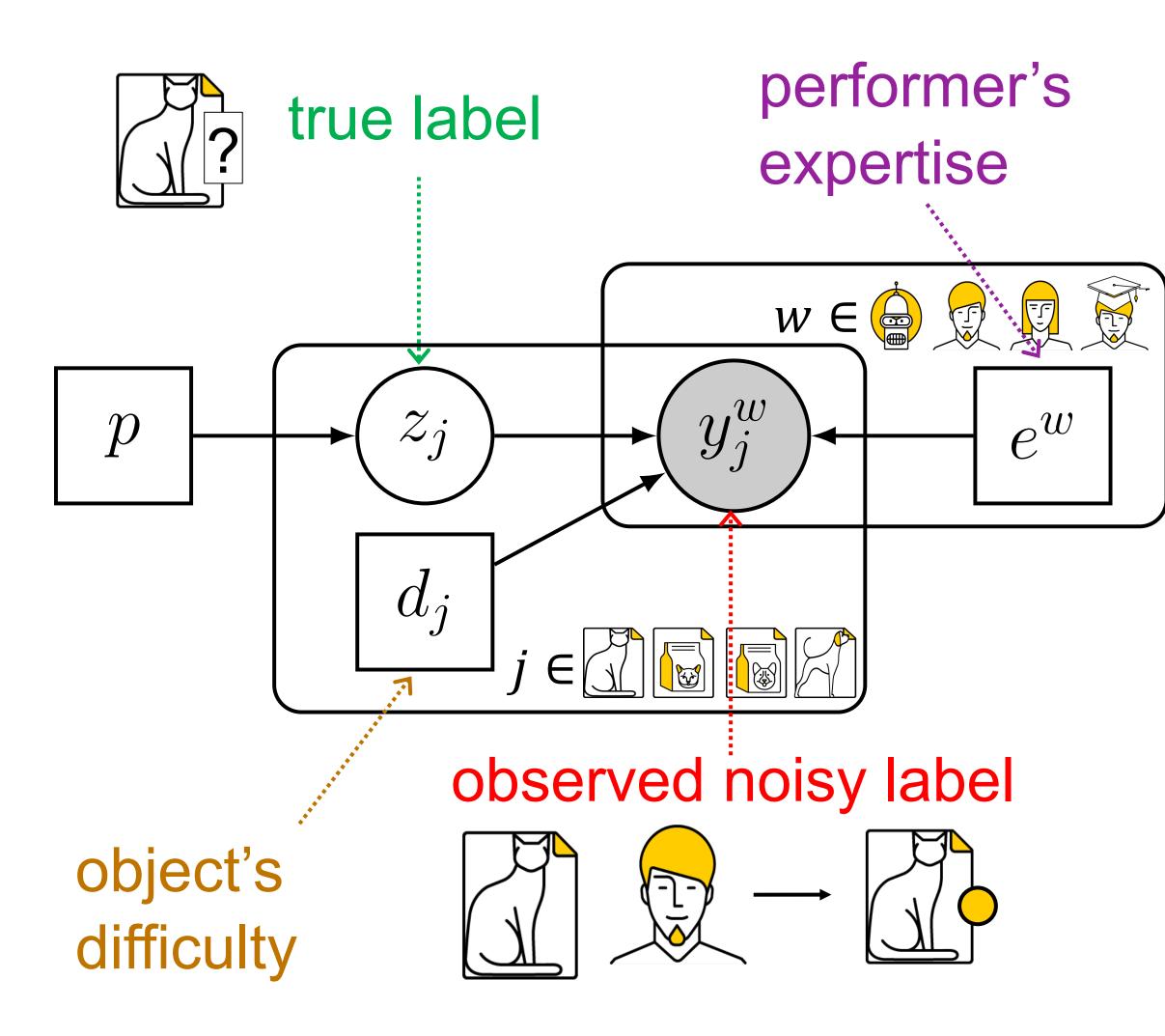
Parameterize difficulty of objects
 by d<sub>j</sub>



#### Advanced aggregation: latent label models



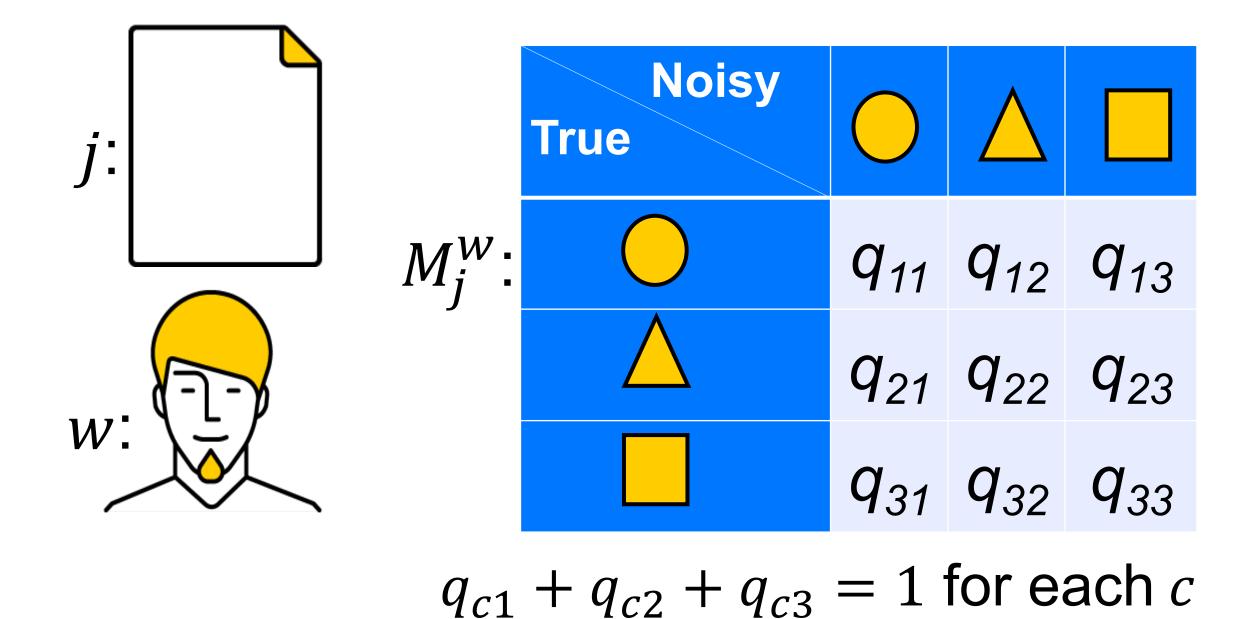
## Latent label models: noisy label model



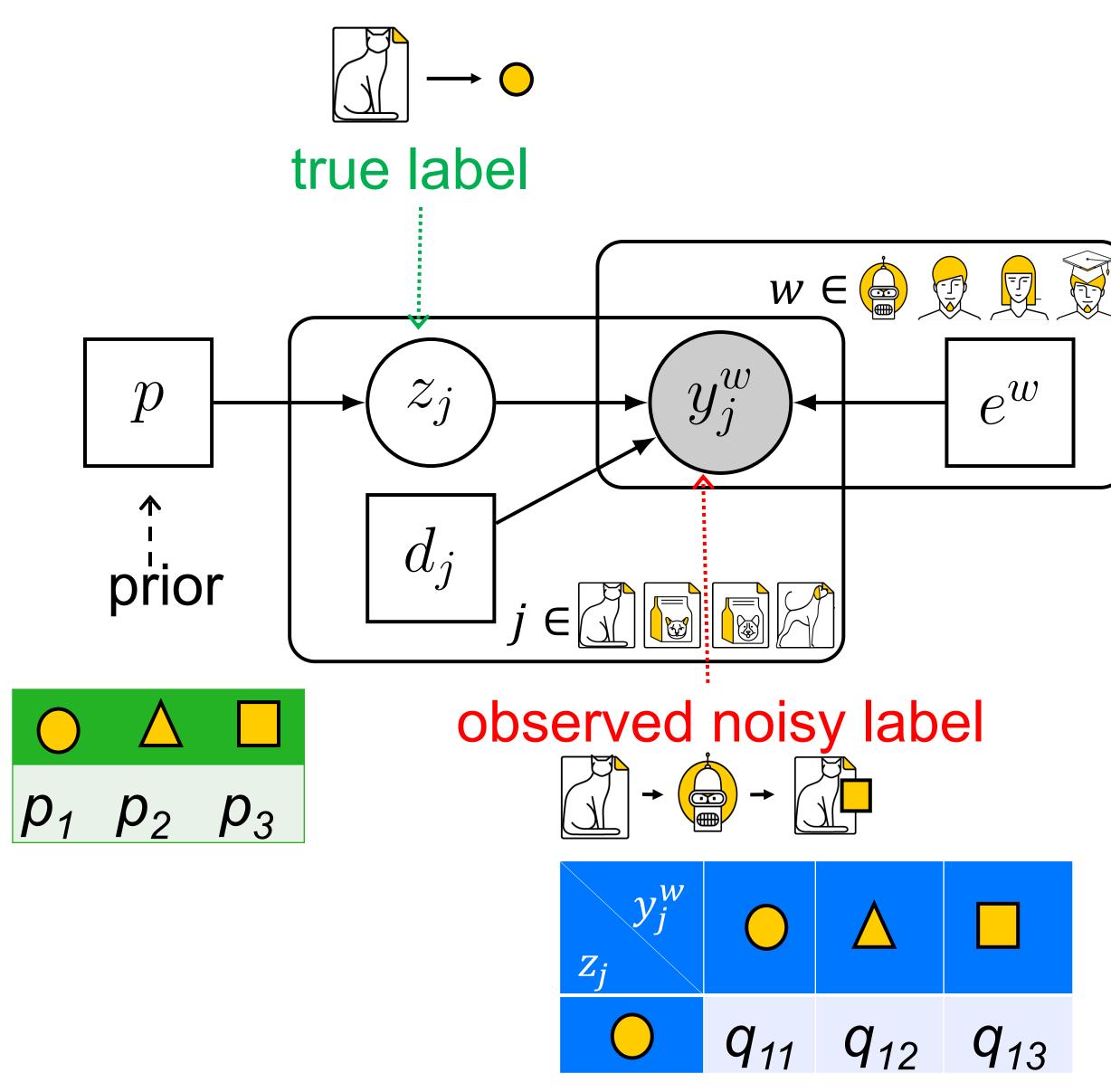
> A noisy label model  $M_j^w = M(e^w, d_j)$ 

is a matrix of size *K*×*K* with elements

$$M_j^w[c,k] = Pr(\underline{Y_j^w} = k \mid \underline{Z_j} = c)$$



#### Latent label models: generative process

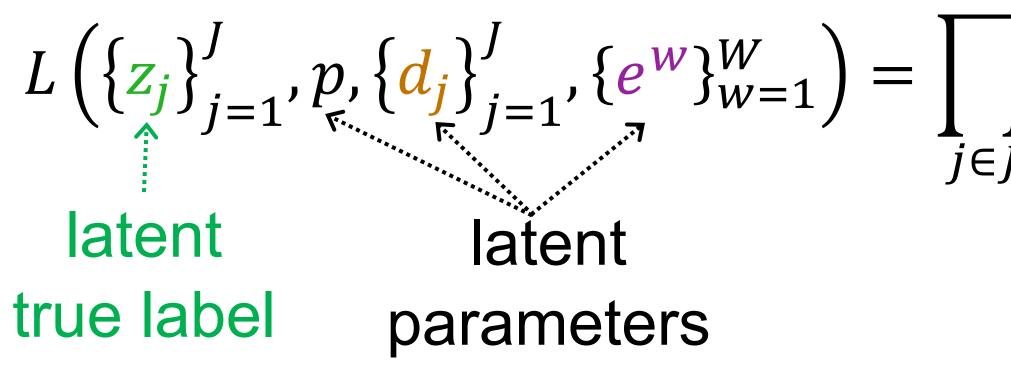


- > Noisy labels generation:
- 1. Sample  $z_j$  from a distribution  $P_Z(p)$
- 2. Sample  $y_j^w$  from a distribution  $P_Y(M_j^w[z_j,\cdot])$

In multiclassification, a standard choice for  $P_Z(\cdot)$  and  $P_Y(\cdot)$  is a Multinomial distribution Mult( $\cdot$ )

#### Latent label models: parameters optimization

- The likelihood of y and z under the latent label model:



Estimate parameters and true labels by maximizing L(...)

Assumption:  $y_i^w$  is cond. independent of everything else given  $z_i$ ,  $d_i$ ,  $e^w$ 

observed noisy label

$$\prod_{i \in J} \sum_{\substack{z_j \in \{1, \dots, K\}}} \Pr(z_j | p) \prod_{w \in W_j} \Pr(\frac{y_j^{w} | z_j, d_j, e^w}{y_j^{w} | z_j, d_j, e^w})$$
  
likelihood of noisy and true labels for object *j*

### Latent label models: EM algorithm

>

$$\mathbb{E}_{\mathbf{z}}\log\Pr(\mathbf{y},\mathbf{z}) = \sum_{j\in J}\sum_{z_j\in\{1,\dots,K\}}\Pr(z_j|p)\log\prod_{w\in W_j}\Pr(z_j|p)\Pr(y_j^w|z_j,d_j,e^w)$$

**E-step**: Use Bayes' theorem for posterior distribution of  $\hat{z}$  given p, d, e: >

$$\hat{z}_j[c] = \Pr(Z_j = c | \mathbf{y}, p, \mathbf{d}, \mathbf{e}) \propto \Pr(Z_j = c | p) \prod_{w \in W_j} \Pr(\mathbf{y}_j^w | Z_j = c, \mathbf{d}_j, e^w)$$

>

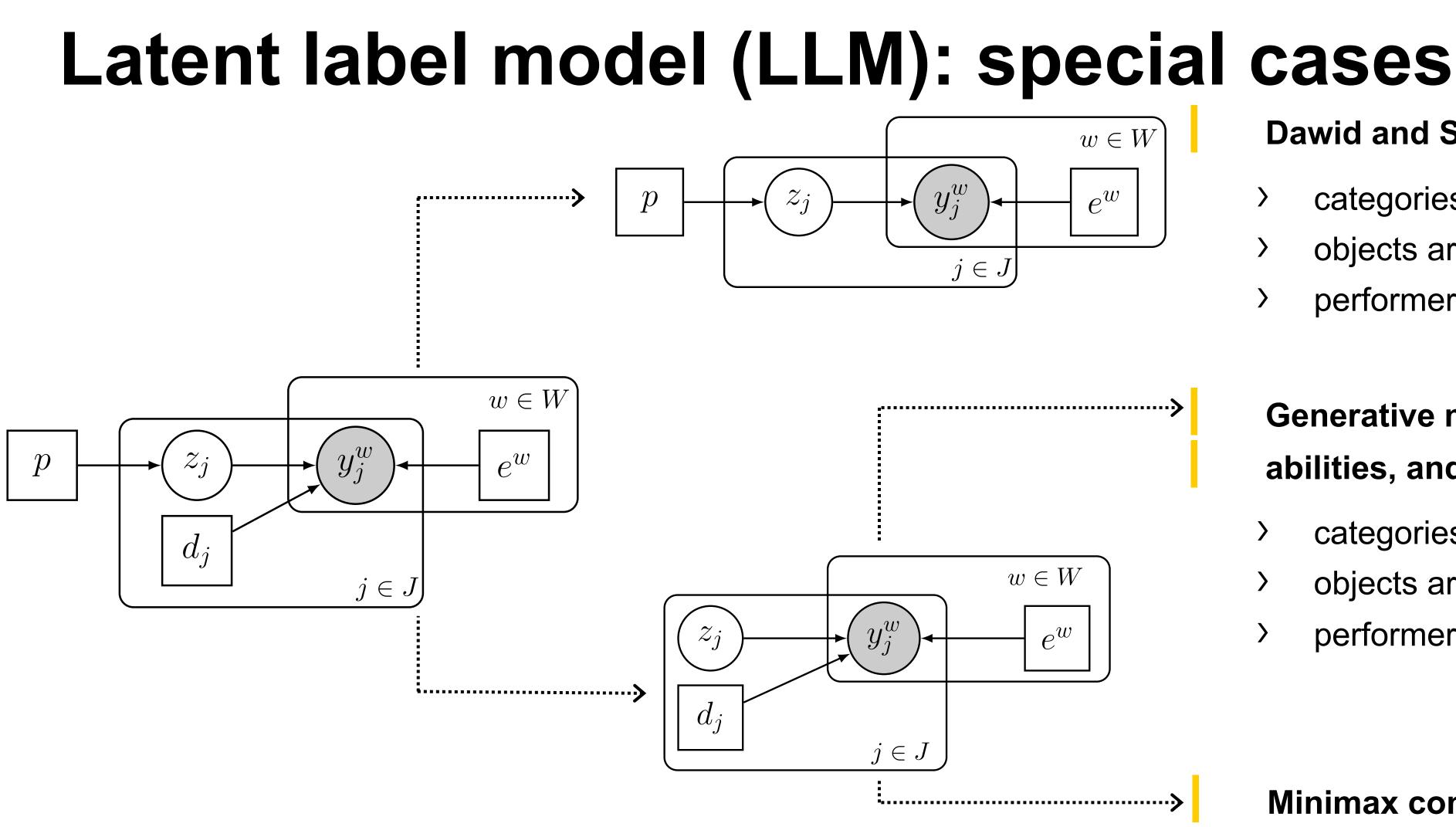
 $(p, \mathbf{d}, \mathbf{e}) = \operatorname{argmax} \mathbb{E}_{\hat{\mathbf{z}}} \log$ 

- Analytical solutions
- Gradient descent

Maximization of the expectation of log-likelihood (LL), a lower bound on LL of y and z

**M-step**: Maximize the expectation of LL with respect to the posterior distribution of  $\hat{z}$ :

$$\operatorname{SPr}(z_j|p) \prod_{w \in W_j} \operatorname{Pr}(y_j^w|z_j, d_j, e^w)$$



#### Dawid and Skene model (DS):

- categories are different
- objects are similar
- performers are different >

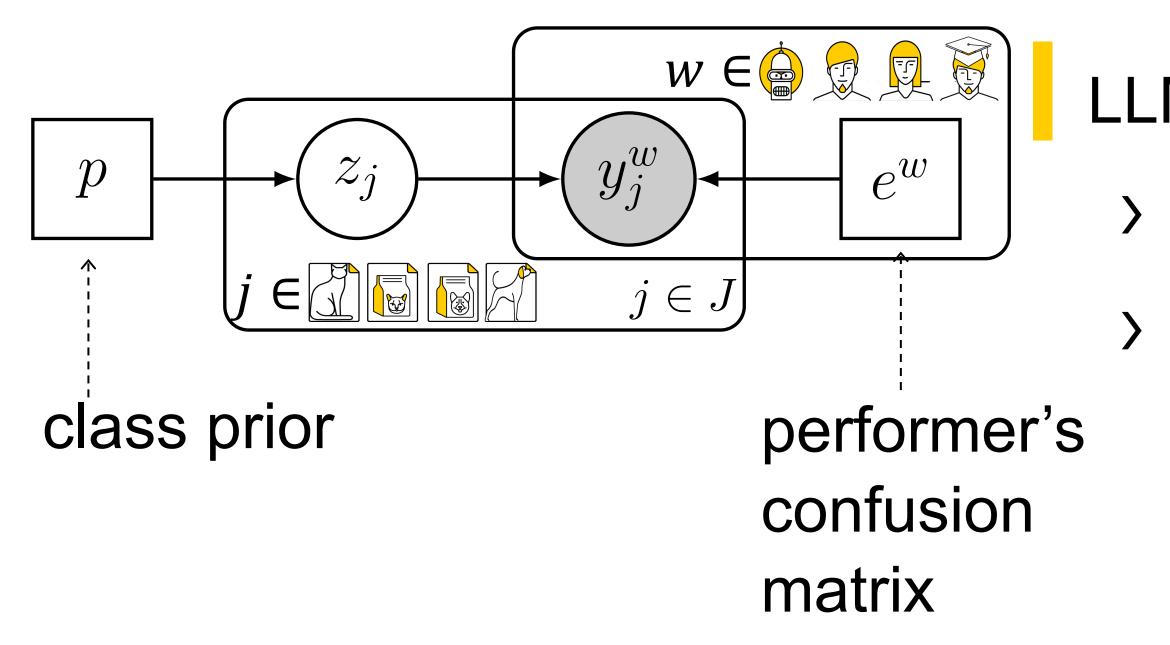
#### Generative model of labels, abilities, and difficulties (GLAD):

- categories are similar
- objects are different
- performers are different

#### Minimax conditional entropy model (MMCE):

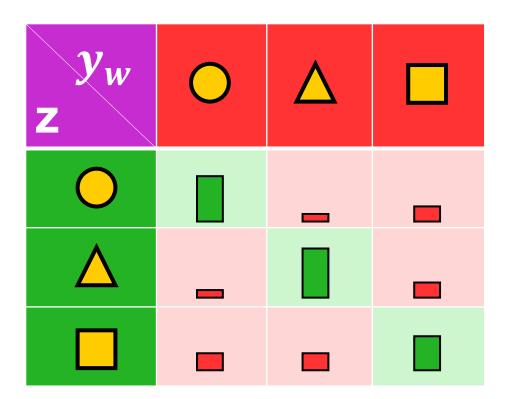
- categories are different
- objects are different
- performers are different

# **Dawid and Skene model (DS)**



Dawid and Skene, Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm, 1979

- LLM with parameters:
  - > p vector of length K: p[i] = Pr(Z = c)
    - $e^{w}$  matrix of size  $K \times K$ :  $e^{w}[c,k] = \Pr(Y^{w} = k | Z = c)$



#### **DS:** parameters optimization

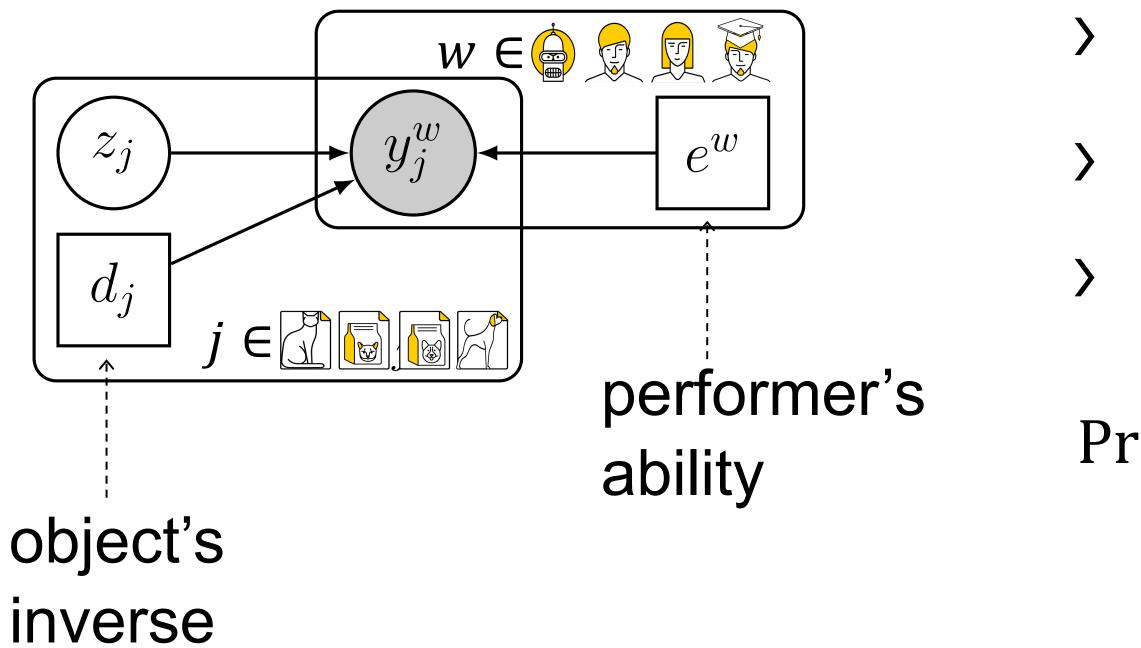
> E-step:

$$\widehat{z_j}[c] = \frac{p[c] \prod_{w \in W_j} e^w[c, y_j^w]}{\sum_k p[k] \prod_{w \in W_j} e^w[k, y_j^w]}, \qquad c = 1, \dots, K$$

> M-step: Analytical solution

$$e^{w}[c,k] = \frac{\sum_{j \in J} \widehat{z_{j}}[c] \delta(\underline{y_{j}^{w}} = k)}{\sum_{q=1}^{K} \sum_{j \in J} \widehat{z_{j}}[c] \delta(\underline{y_{j}^{w}} = q)}, \qquad k, c = 1, \dots, K$$
$$p[c] = \frac{\sum_{j \in J} \widehat{z_{j}}[c]}{L}, \qquad c = 1, \dots, K$$

### Generative model of Labels, Abilities, and **Difficulties (GLAD)**



difficulty

Whitehill et al., Whose vote should count more: Optimal integration of labels from labelers of unknown expertise, 2009

- LLM with parameters:
  - > scalar  $d_i \in (0, \infty)$
  - > scalar  $e^w \in (-\infty, \infty)$ 
    - Model:

$$\left(\frac{Y_{j}^{w}}{K}=k|Z_{j}=c\right) = \begin{cases} a(w,j), & c=k\\ \frac{1-a(w,j)}{K-1}, c\neq k\\ 1\\ \end{cases}$$
where  $a(w,j) = \frac{1}{1+\exp(-e^{w}d_{j})}$ 

### **GLAD:** parameters optimization

> Let 
$$a(w,j) = \frac{1}{1 + \exp(-e^w d_j)}$$
 and  $P(z)$ 

E-step:

$$\widehat{z_j}[c] \propto \mathbb{P}(Z_j = c) \prod_{w \in W_j} a(w, j)^{\delta\left(\frac{y_j^w}{j} = c\right)} \left(\frac{1 - a(w, j)}{K - 1}\right)^{\delta\left(\frac{y_j^w}{j} \neq c\right)}, \ c = 1, \dots, K$$

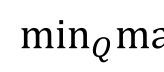
**M-step**: estimate (d, e) for given  $\hat{z}$  using gradient descent  $(\mathbf{d}^{\mathsf{t}}, \mathbf{e}^{\mathsf{t}}) = \operatorname{argmax} \sum_{i \in I} \left[ \mathbb{E}_{\widehat{z_i}} \right]_{i \in I}$ 

 $z_i$ ) be a predefined prior (e.g.,  $P(z_i) = \frac{1}{K}$ )

$$\log P(z_j) + \sum_{w \in W_j} \mathbb{E}_{\widehat{z_j}} \log \Pr(y_j^w | z_j) \right]$$

# MiniMax Conditional Entropy model (MMCE)

Find parameters that minimize the maximum conditional entropy of observed labels:



LLM with parameters:

object's confusability matrix

 $z_j$ 

 $d_{i}$ 

performer's expertise matrix

 $e^w$ 

Noisy label model: >  $\Pr(\underline{Y_j^w} = k | \underline{Z_j} = c) = \exp(\underline{d_j}[c, k] + e^w[c, k])$ 

 $y_j^w$ 

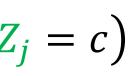
 $j \in \mathbb{R}$ 

(-J-)

$$\operatorname{ax}_{P} - \sum_{\substack{j \in J \\ c \in \{1, \dots, K\}}} Q(Z_{j} = c) \sum_{\substack{w \in W \\ k \in \{1, \dots, K\}}} P(Y_{j}^{w} = k | Z_{j} = c) \log P(Y_{j}^{w} = k | Z_{j})$$

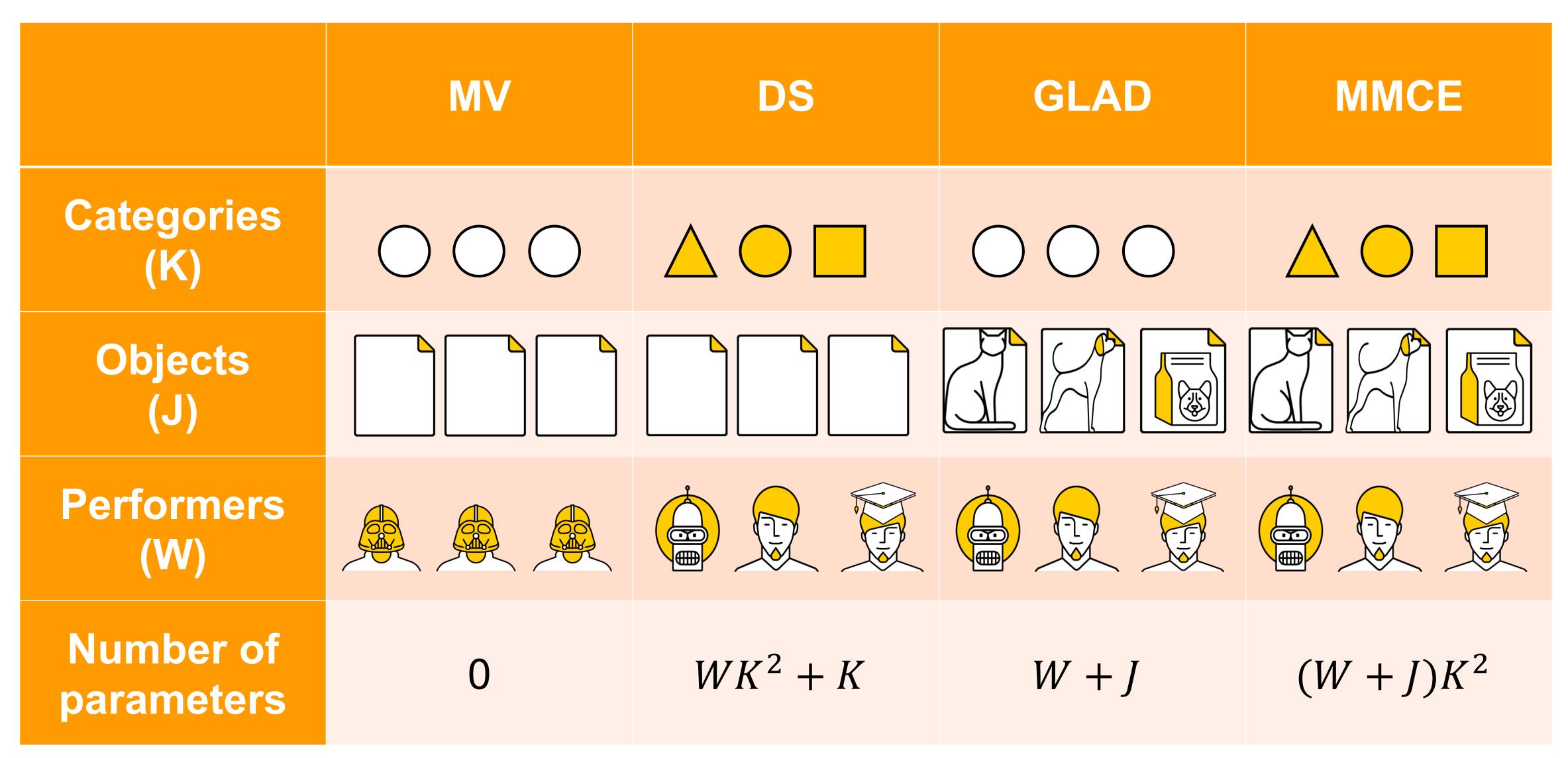
>  $d_i$  – matrix of size  $K \times K$ 

 $e^{w}$  – matrix of size  $K \times K$ 





### Summary of aggregation methods



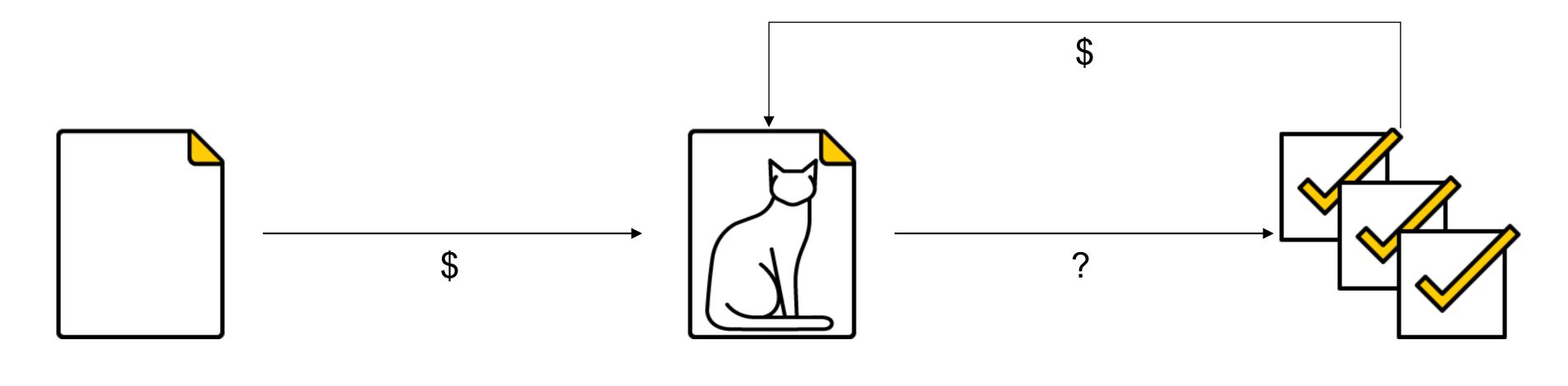
Text Aggregation



## **Text Aggregation**

- So far we discussed how to aggregate categorical responses
- In NLP we often work with **textual data**, i.e., with sequences
- How can we solve tasks with "unknown" responses?

### Crowdsourced Copy-Editing: Soylent



Find

Fix

Bernstein et al. (UIST '10), https://doi.org/10.1145/1866029.1866078

Verify

### Automatic Text Aggregation

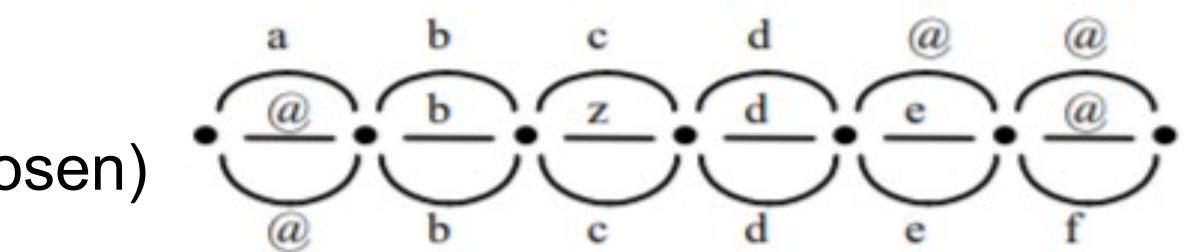
- Post-acceptance is a universal technique for open-ended tasks
- However, it adds additional (slight) complexity to the pipeline
- Can we aggregate texts without human intervention?
- We would like to minimize Word Error Rate (WER) computed as a function of the number of Correct, Substitution, Deletion, Insertion items:
  - WER =

$$= \frac{S + D + I}{C + S + D}$$

### Automatic Text Aggregation: ROVER

An efficient method for long sequences:

- Input: a b c d; b z d e; b c d e f
- Word Transition Network: (words with highest scores are chosen)
- Result: b c d e



#### Automatic Text Aggregation: HRRASA

- Obtain the sequence embeddings with BERT, RoBERTa, etc.
- Choose the response that is the closes to the embedding e() of the • estimated response  $(a_i^w)$  provided by performer w for task j

$$\beta_{w} = \frac{\sum_{\substack{X_{(\frac{\alpha}{2},|V_{w}|)}\\\sum\left(e\left(a_{j}^{w}\right)-\hat{e}_{j}\right)^{2}}}{\sum\left(e\left(a_{j}^{w}\right)-\hat{e}_{j}\right)^{2}} \qquad \hat{e}_{j} = \frac{\sum \beta_{w}}{\sum}$$
$$s_{j}^{w} = \beta_{w} \cdot \exp\left(-\frac{\left\|e_{j}^{w}-\hat{e}_{j}\right\|^{2}}{\left\|e_{j}^{w}\right\|^{2}\left\|\hat{e}_{j}\right\|^{2}}\right) + \gamma_{j}^{w}$$

#### Parameters are estimated step-by-step

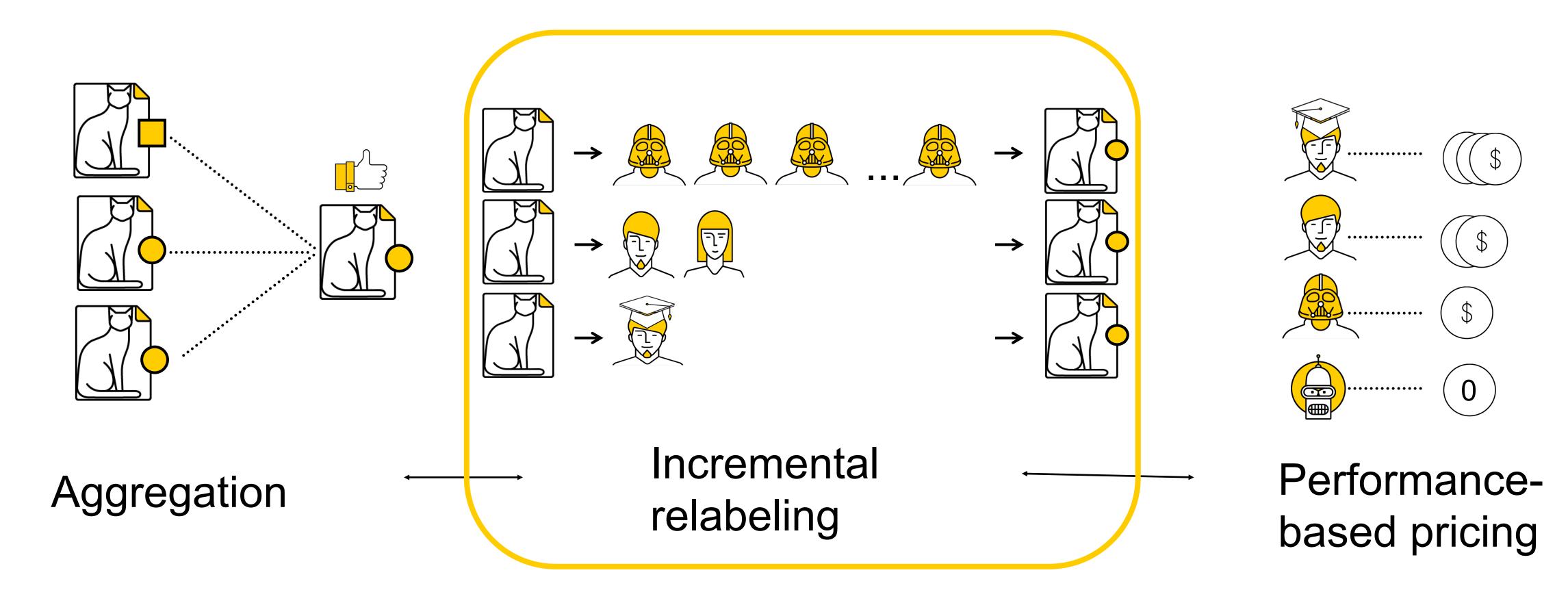
$$\hat{e}_j = \frac{\sum \beta_w e(a_j^w)}{\sum \beta_w}$$

#### Crowd-Kit, a General-Purpose Toolkit

# https://pypi.org/project/crowd-kit/

**Crowd-Kit** allows aggregating answers of many kinds, including categorial, sequential, and graphical, using the same API.

### Key components of labeling with crowds



# Incremental relabeling

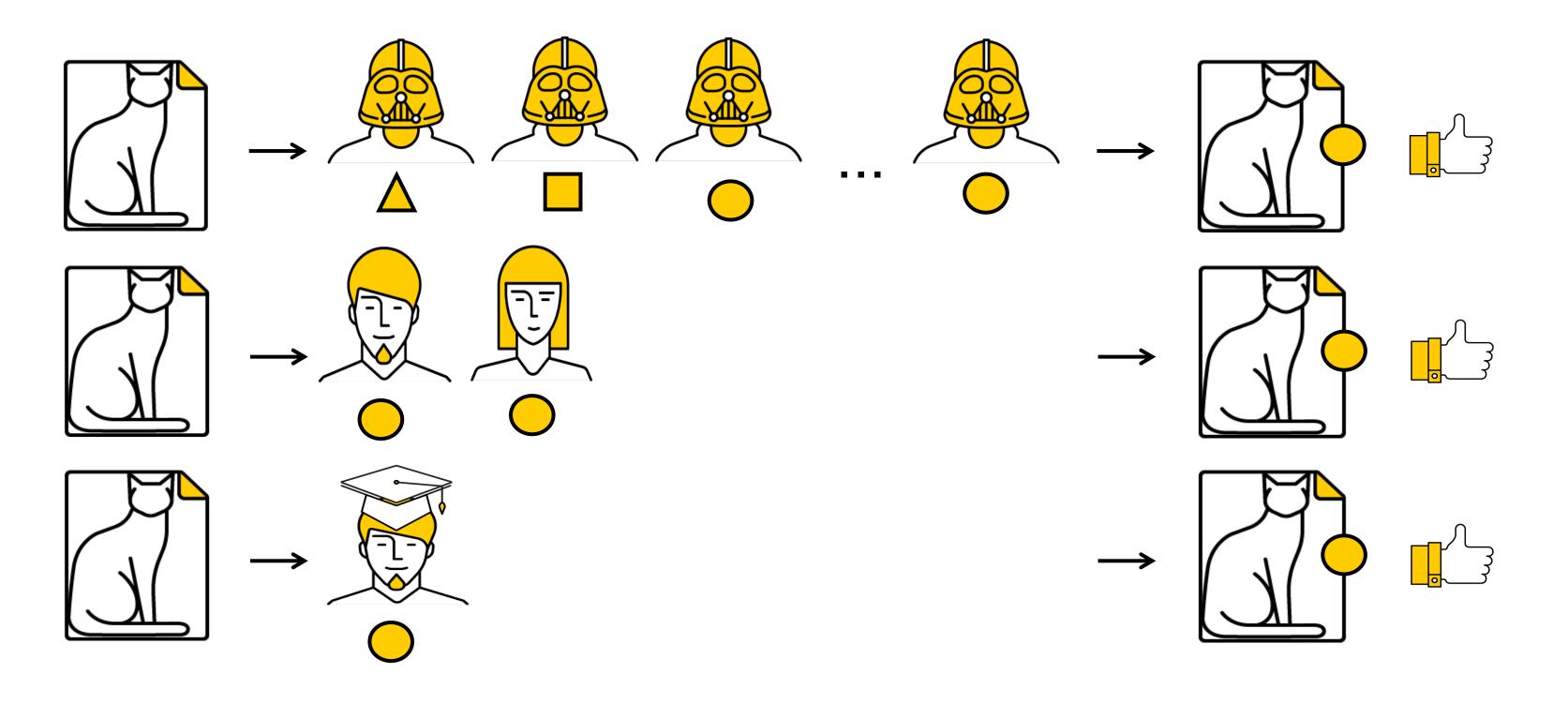
# aka dynamic overlap

## Pool settings: dynamic overlap

|                             | Quality control                                                                                                                                                                                                                                                    |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | Add rules to get more accurate responses.<br>All rules work independently.                                                                                                                                                                                         |  |  |
| NON-AUTOMATIC<br>ACCEPTANCE | No REVIEW PERIOD IN DAYS                                                                                                                                                                                                                                           |  |  |
| CAPTCHA FREQUENCY 🕐         | None ~                                                                                                                                                                                                                                                             |  |  |
|                             |                                                                                                                                                                                                                                                                    |  |  |
|                             |                                                                                                                                                                                                                                                                    |  |  |
|                             | + Add Quality Control Rule                                                                                                                                                                                                                                         |  |  |
|                             |                                                                                                                                                                                                                                                                    |  |  |
|                             | ***************************************                                                                                                                                                                                                                            |  |  |
|                             |                                                                                                                                                                                                                                                                    |  |  |
|                             | Overlap                                                                                                                                                                                                                                                            |  |  |
|                             | <b>Overlap</b><br>Specify how many performers you want to complete each task in the pool.                                                                                                                                                                          |  |  |
| OVERLAP ?                   |                                                                                                                                                                                                                                                                    |  |  |
| OVERLAP ?                   |                                                                                                                                                                                                                                                                    |  |  |
|                             | Specify how many performers you want to complete each task in the pool.                                                                                                                                                                                            |  |  |
| DYNAMIC OVERLAP ?           | Specify how many performers you want to complete each task in the pool.                                                                                                                                                                                            |  |  |
| DYNAMIC OVERLAP ?           | Specify how many performers you want to complete each task in the pool. Off                                                                                                                                                                                        |  |  |
| DYNAMIC OVERLAP ?           | Specify how many performers you want to complete each task in the pool.  Off  Speed/quality ratio Specify additional conditions for selecting performers by their rating in Toloka. This will improve quality, but may reduce the speed of task completion because |  |  |

### Incremental relabeling problem

**Obtain aggregated labels of a desired level of** quality using a fewer number of noisy labels



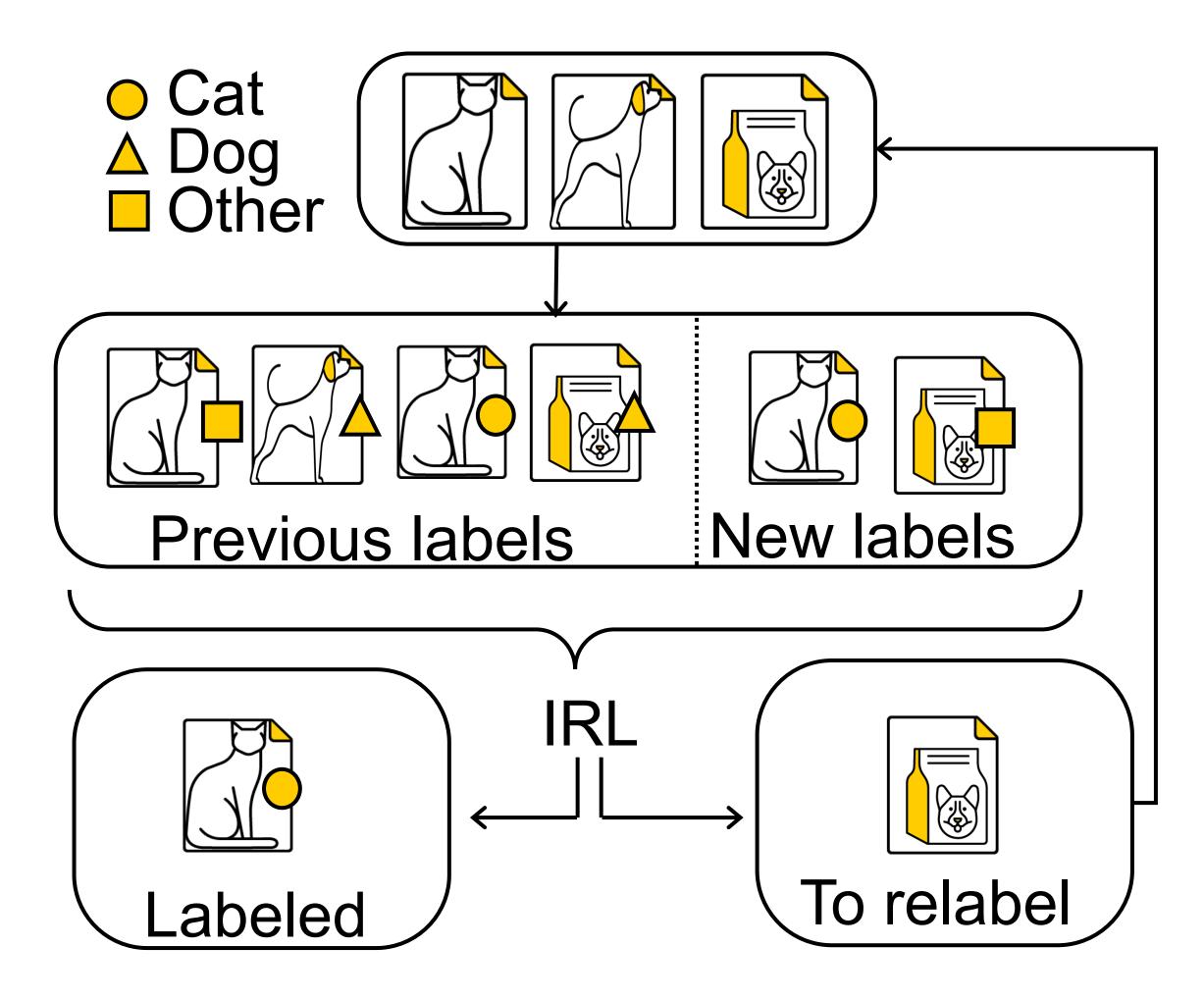
## Incremental relabeling scheme (IRL)

Request a label for each object

In real time IRL algorithm receives: (1) previously accumulated labels (2) new labels

Decides: (1) which objects are labeled (2) which objects to relabel

Repeat until all tasks are labeled

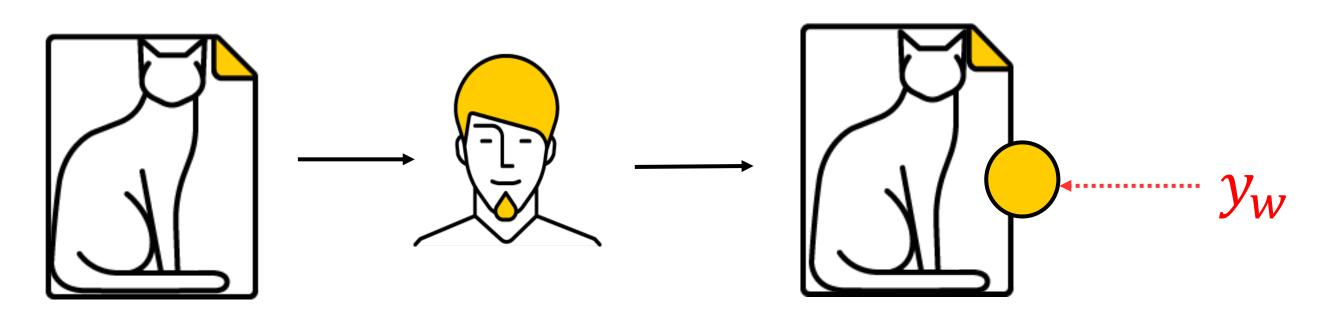


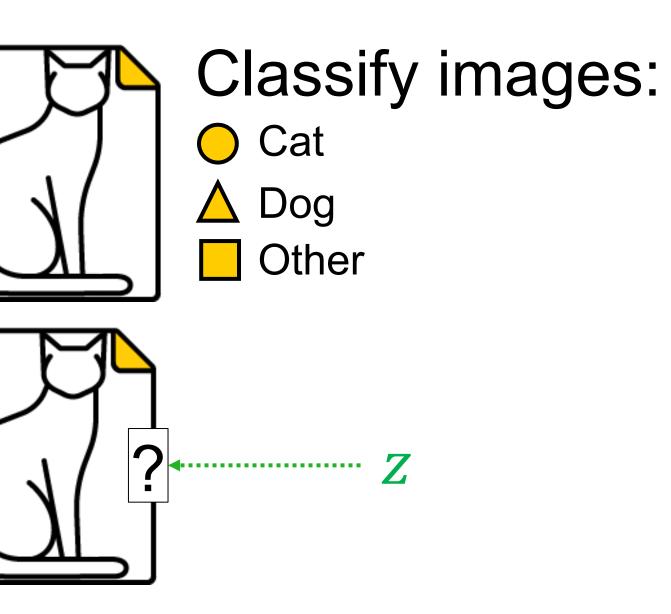
#### Notations

Consider one object 

>  $z \in \{1, \dots, K\}$  - latent true label

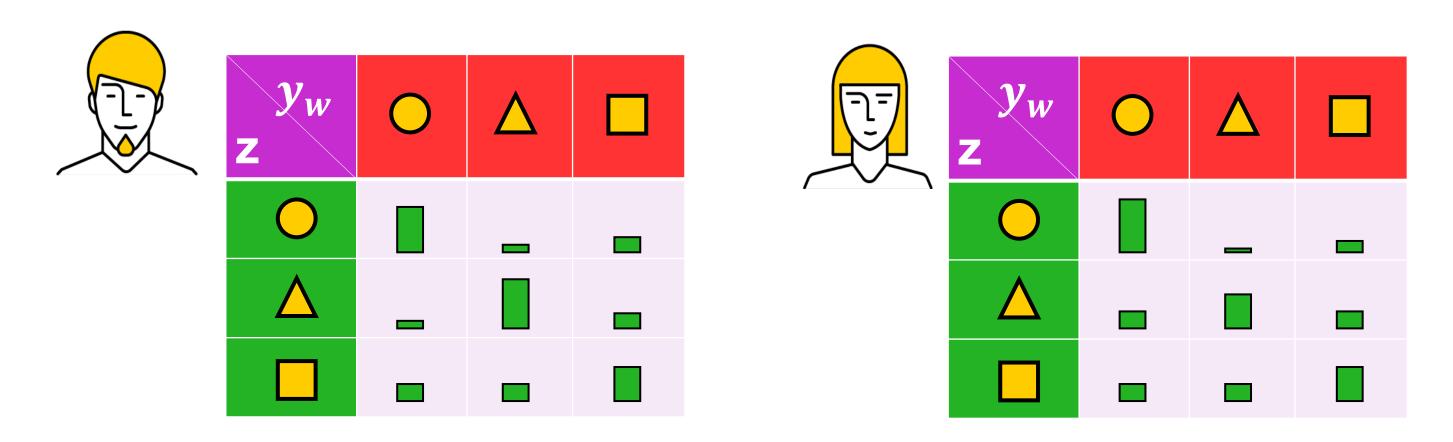
>  $y_w \in \{1, ..., K\}$  - observed noisy label from performer w:



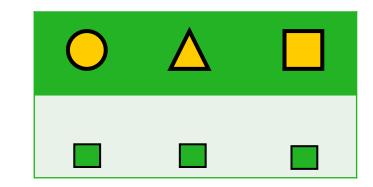


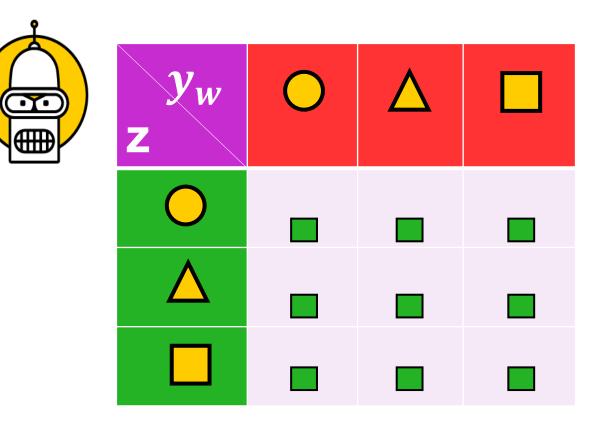
#### Notations

Noisy label model for performer w: >  $M_w \in [0,1]^{K \times K}$ :  $\Pr(Y_w = k | Z = c) = M_w[c,k]$ 



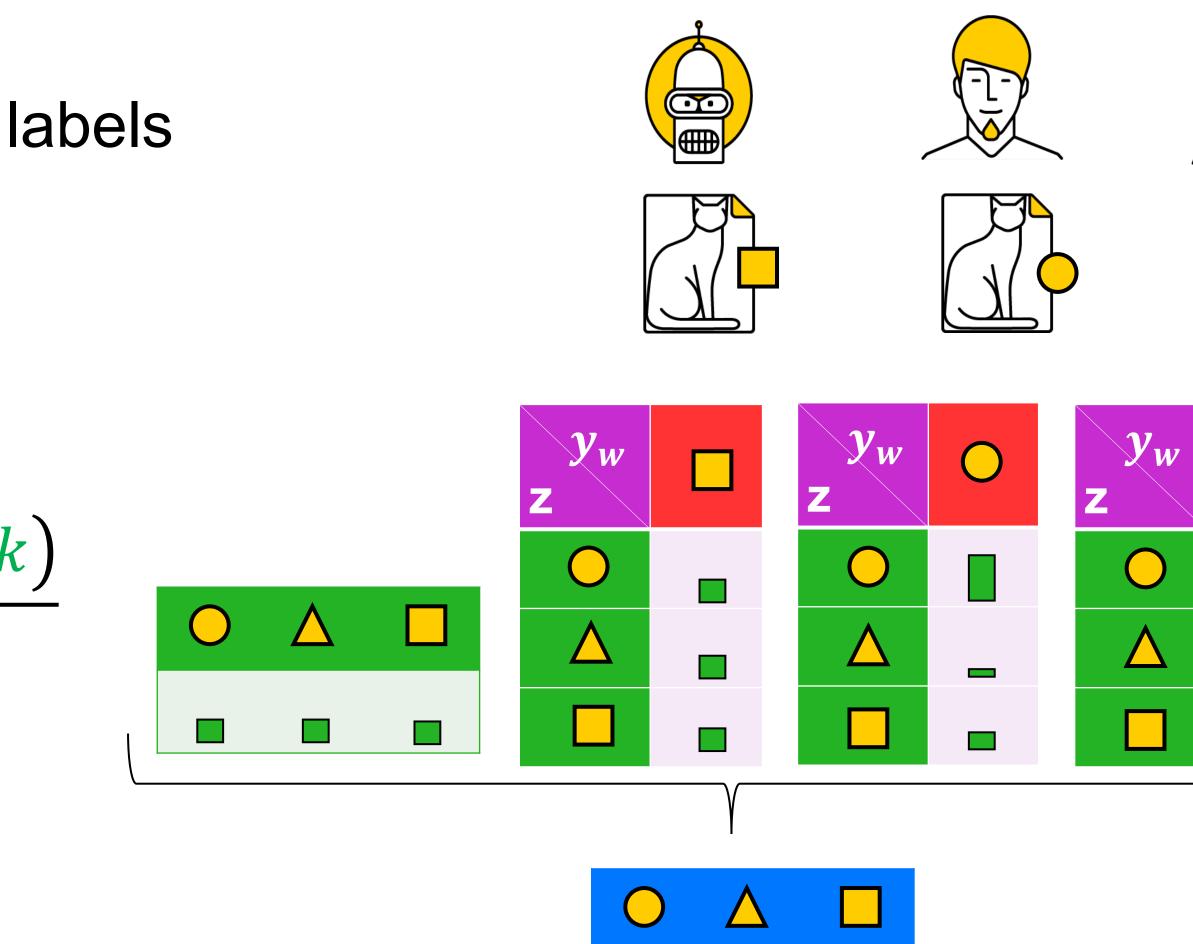
> Prior distribution:  $Pr(Z = k) = p_k$ 





#### **Posterior distribution**

- >  $\{y_{w_1}, ..., y_{w_n}\}$  accumulated noisy labels for the object
- > Using Bayes rule:  $Pr(Z = k | \{y_{w_1}, ..., y_{w_n}\})$   $= \frac{Pr(Z = k)Pr(\{y_{w_1}, ..., y_{w_n}\}|Z = k)}{Pr(\{y_{w_1}, ..., y_{w_n}\})}$   $= \frac{p_k \prod_{i=1}^n M_{w_i}[k, y_{w_i}]}{\sum_{t=1}^K p_t \prod_{i=1}^n M_{w_i}[t, y_{w_i}]}$





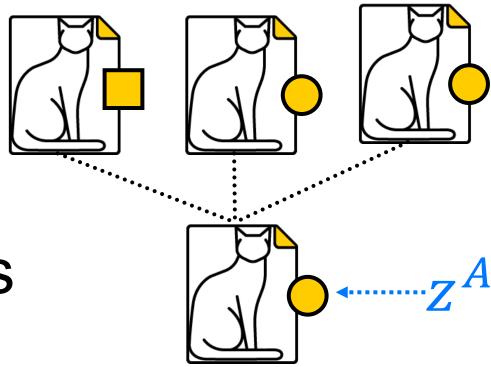
#### Expected accuracy of aggregated labels

- > Let A be an aggregation model, e.g. MV, DS, GLAD,...
- Denote aggregated label  $z^A = A(\{y_{W_1}, \dots, y_{W_n}\})$
- Expected accuracy of aggregated labels given noisy labels is

$$E(\delta(z = z^{A}) | \{y_{w_{1}}, \dots, y_{w_{n}}\}) = \Pr(z = z^{A} | \{y_{w_{1}}, \dots, y_{w_{n}}\})$$

Stop labeling if  $E(\delta(z = z^A) | \{y_{W_1}, \dots, y_{W_n}\}) \ge C$ 

Sheng VS, Provost F, Ipeirotis PG. Get another label? improving data quality and data mining using multiple, noisy labelers. KDD 2008

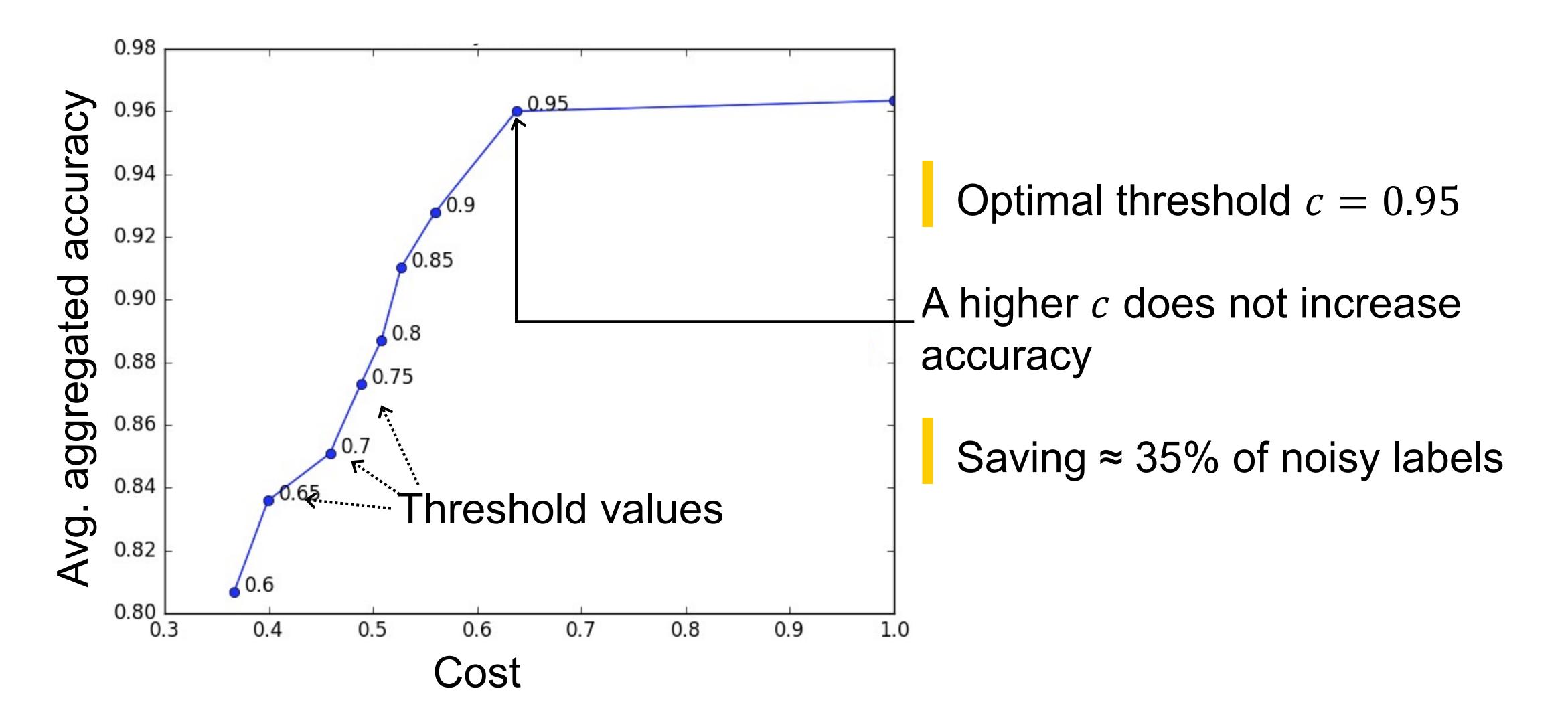


parameter

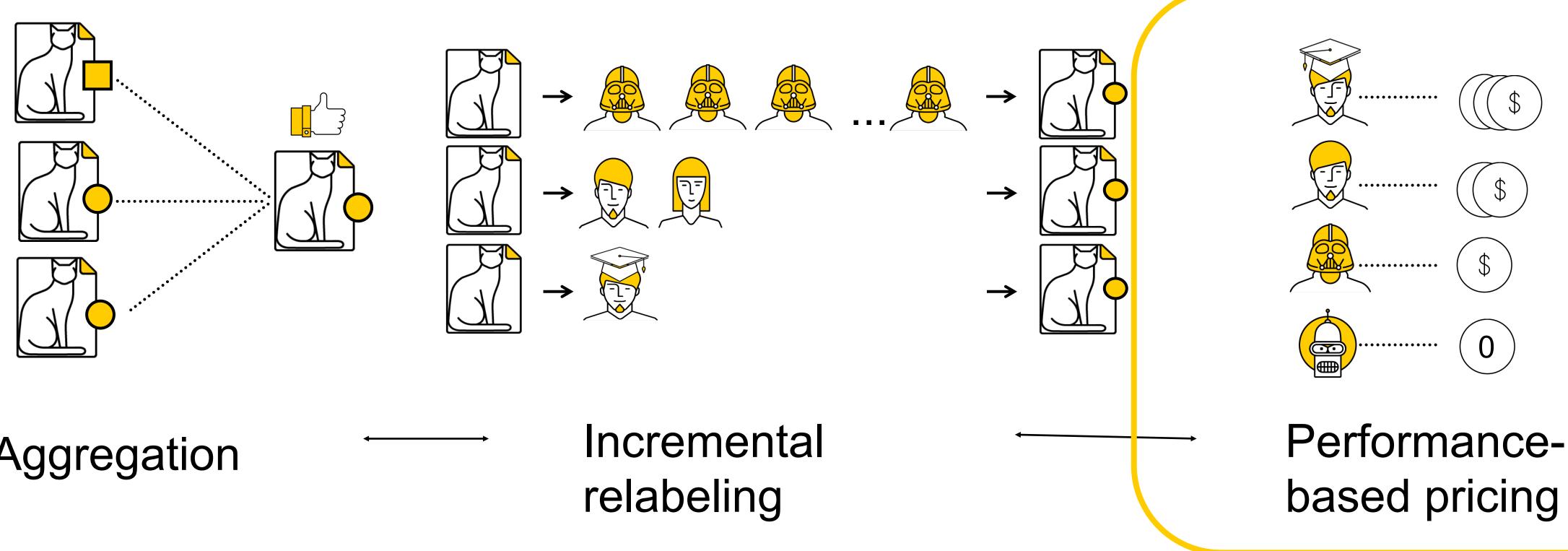
Expected accuracy of  $z^A$ 



#### Threshold in IRL: cost – accuracy trade-off



## Key components of labeling with crowds







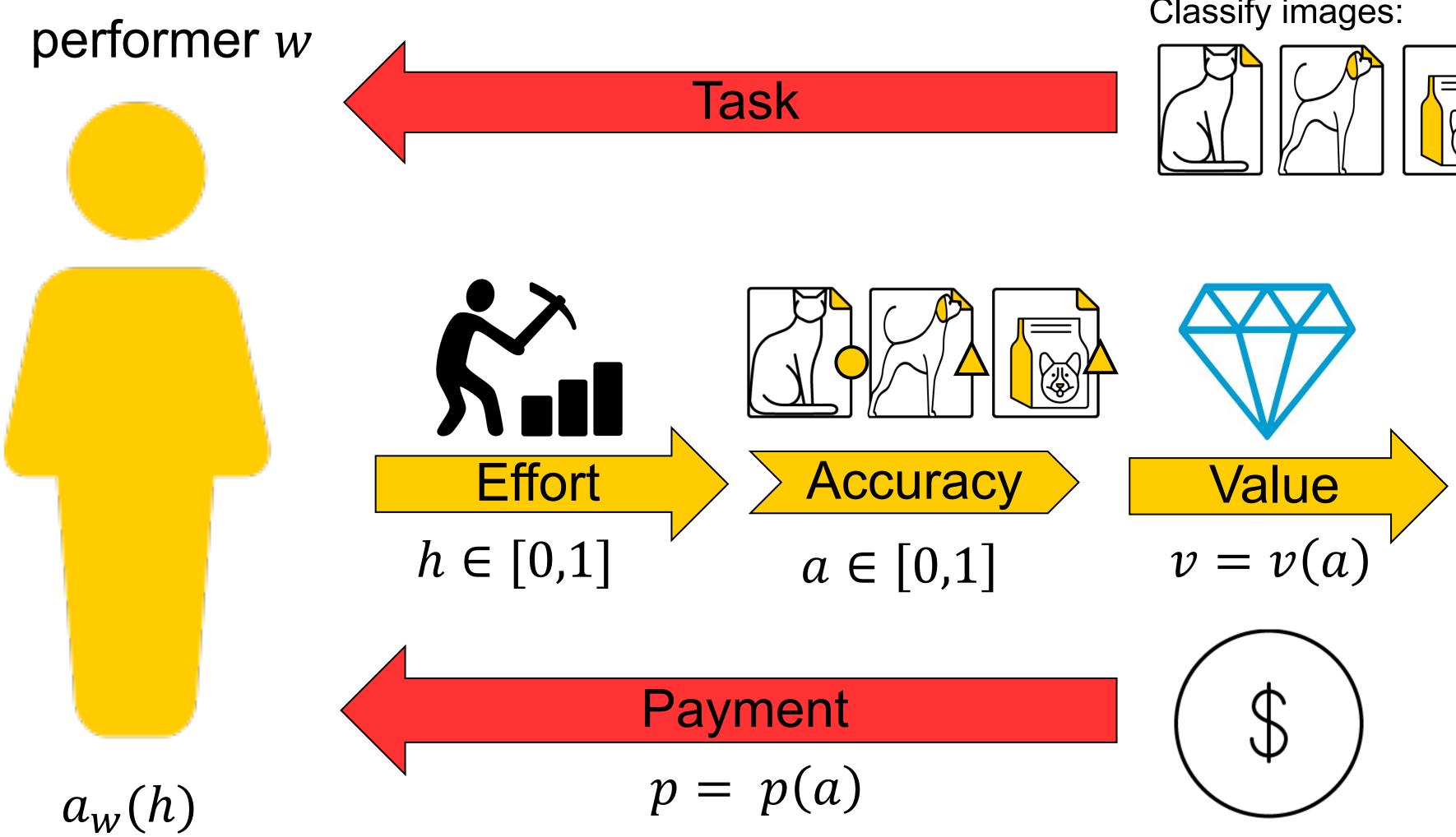
# **Performance-based pricing**

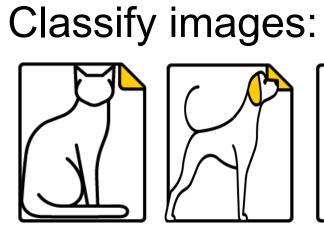
# aka dynamic pricing

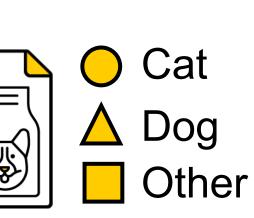
## Pool settings: dynamic pricing

| POOL NAME (VISIBLE ONLY<br>TO YOU) | Are there traffic lights in the picture?                                                                 | $\times$                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|
|                                    | ✓ Use project description                                                                                |                               |
| PUBLIC DESCRIPTION 🕐               |                                                                                                          |                               |
|                                    | Add a private description                                                                                |                               |
|                                    |                                                                                                          |                               |
|                                    | Price per task suite                                                                                     |                               |
|                                    | You can add one or more tasks to the page. Enter the tota page.                                          | al price for all tasks on the |
| PRICE IN US DOLLARS 🕐              | 0.07 FEE ?                                                                                               |                               |
|                                    | + Dynamic pricing                                                                                        |                               |
|                                    | Performers                                                                                               | Copy settings from            |
|                                    | Filter performers who can access the task.                                                               |                               |
|                                    | Toloka has users from different countries,<br>so don't forget to filter by language and region. Learn mo |                               |
|                                    | so don't forget to niter by language and region. Leanning                                                |                               |
| ADULT CONTENT 🕜                    | Yes                                                                                                      |                               |
|                                    | Add filter V                                                                                             | Create skill                  |
|                                    |                                                                                                          |                               |
|                                    |                                                                                                          |                               |

## Labeling as a game: notation



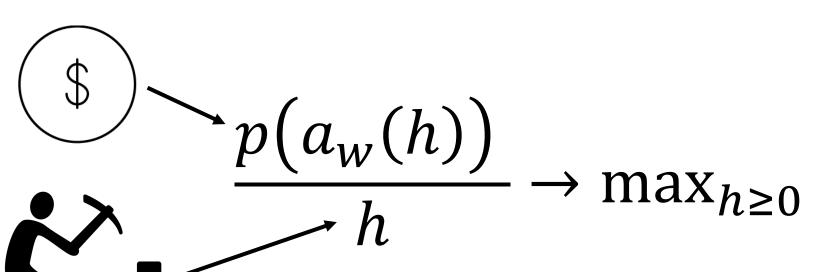






## Labeling as a game: formalization

> Each performer *w* chooses a level of effort *h* for labeling object to maximize earnings per unit of spent effort:



> The requester chooses a pricing p(a) to minimize payments per unit of obtained value



 $\rightarrow \max_{a \in [0,1]}$ 

#### Labeling as a game: incentive compatible pricing

Assume  $a_w(h)$  is a linear function of h:

if the pricing p(a) for each label is proportional to its accuracy a.

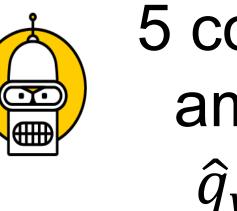
- $a_w(h) = c_1 h + c_0$ Accuracy
- The requester and performers maximize their utility simultaneously

## Performance-based pricing in practice: settings

Price p for the level of accuracy  $a_0$ :  $Pr(\hat{z} = z) \ge a_0$  E.g.:



- $\hat{q}_{w} = \Pr(y^{w} = z)$  estimated quality level of performer w,
  - e.g. the fraction of correct labels for golden set (GS):



5 correct GS among 10  $\hat{q}_{w} = 0.5$ 

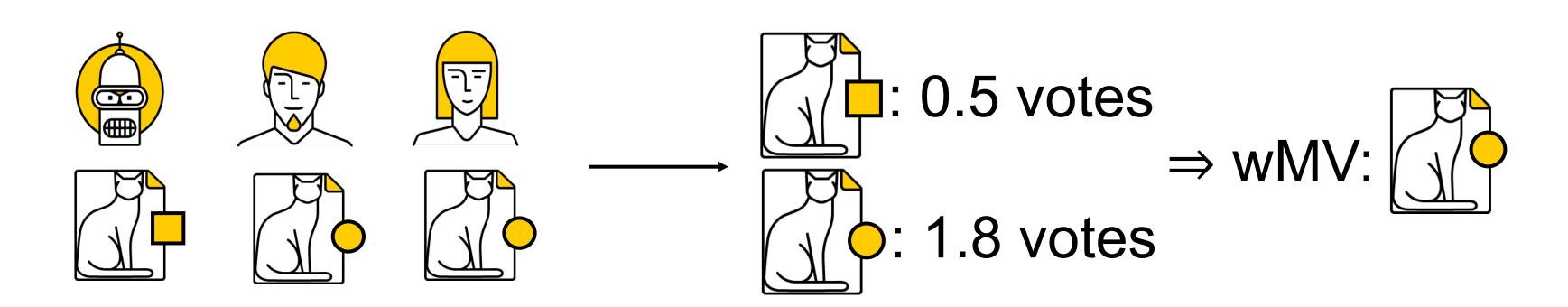
16 correct GS among 20  $\hat{q}_{w} = 0.8$ 



#### 100 correct GS among 100 $\hat{q}_w = 1$

### Performance-based pricing in practice: settings

> Aggregation  $\hat{z}_{j}^{wMV} = \arg \max_{v=1,...,K} \sum_{w \in V} \sum_{w \in$ 



IRL algorithm is based on the expected accuracy of  $\hat{z}_i^{WMV}$ 

$$\sum_{w \in W_j} \hat{q}_w \delta(y = y_j^w)$$

### Performance-based pricing in practice

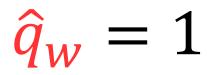
#### **Pricing rules**

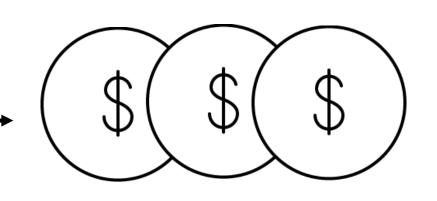
- 1. If  $\hat{q}_w \ge a_0$ , then the price is p
- 2. Else find *n*:

$$\sum_{k=0}^{n/2} {n \choose k} \hat{q}_{w}^{n-k} (1 - \hat{q}_{w})^{k} \ge a_{0}$$
  
Expected accuracy for MV  
The price is  $p/n$ 

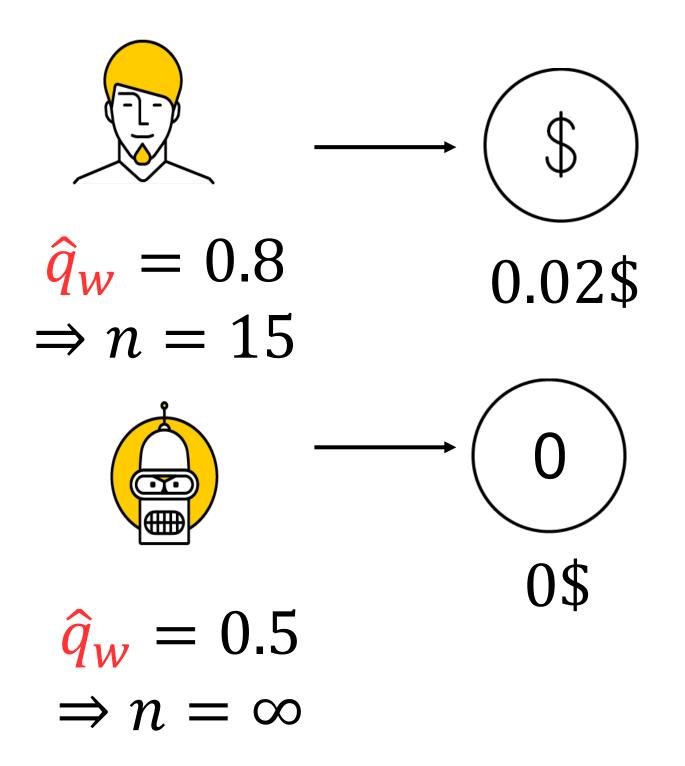
 $a_0 = 0.99$ 



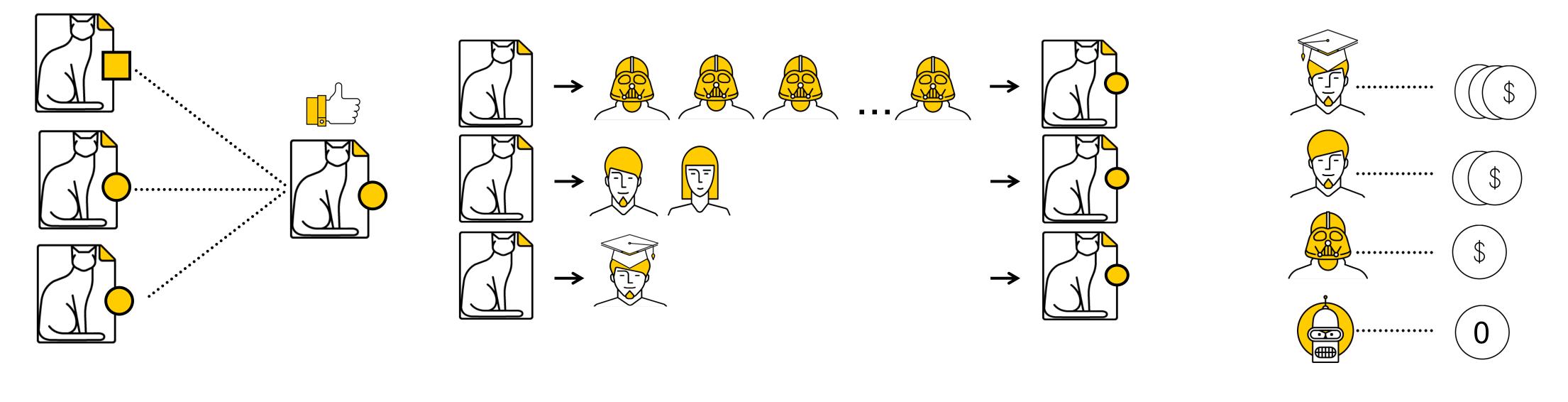




0.3\$



## Key components of labeling with crowds

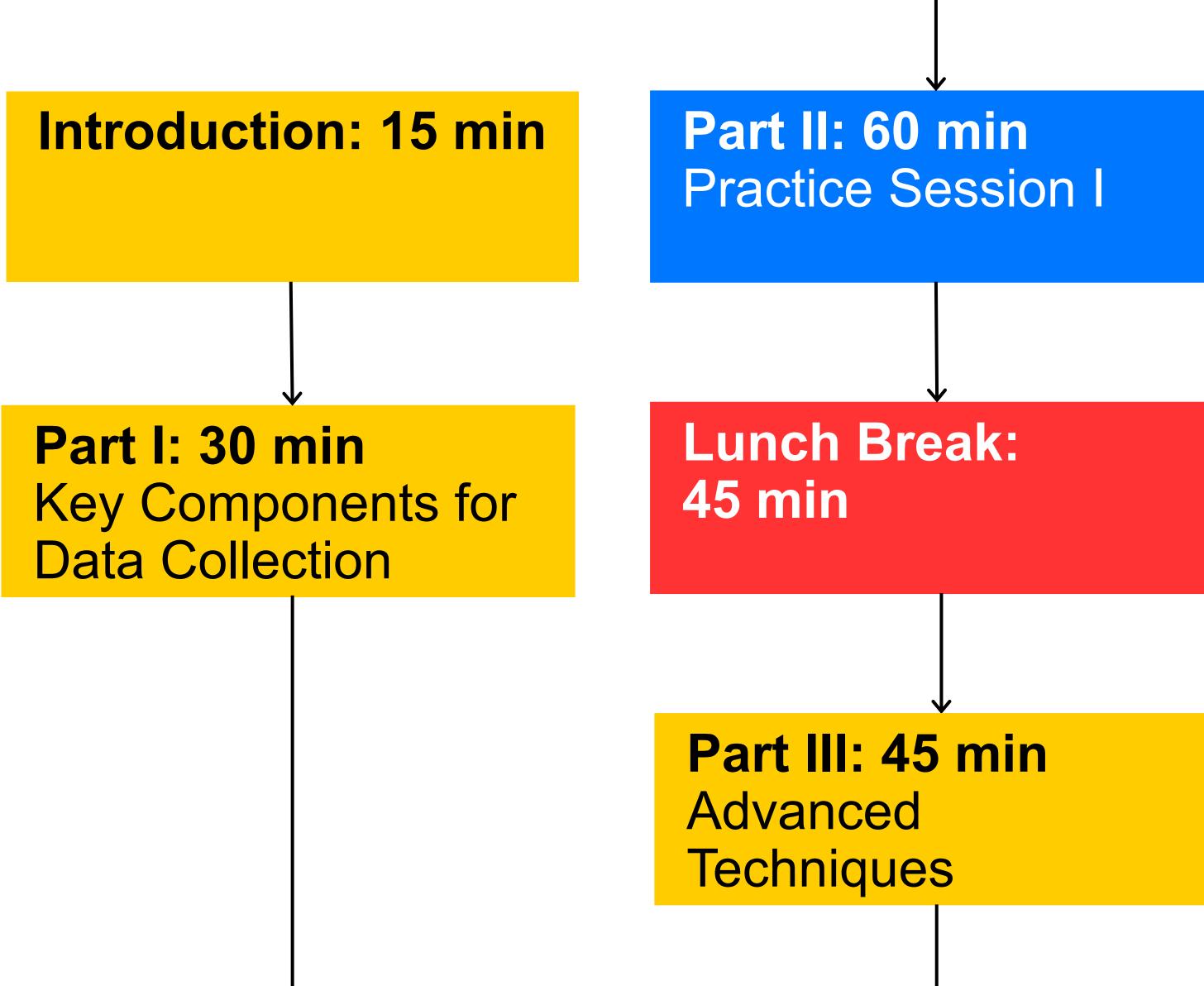




Incremental relabeling

#### Performancebased pricing

#### **Tutorial Schedule**



#### Part IV: 30 min **Practice Session II**

#### Part V: 15 min Conclusion



## Yandex

#### Thank you! Questions?

#### **Dmitry Ustalov**

Analyst/Software Developer Crowdsourcing Research Group



dustalov@yandex-team.ru



https://research.yandex.com/tutorials/crowd/naacl-2021