

Vandex

Yandex

Crowdsourcing Practice for Efficient Data Labeling: Aggregation, Incremental Relabeling, and Pricing

Alexey Drutsa, Valentina Fedorova, Dmitry Ustalov, Olga Megorskaya, Evfrosiniya Zerminova, Daria Baidakova

SIGMOD 2020 hands-on tutorial

Theory on Aggregation

Dmitry Ustalov and Valentina Fedorova, Data Analysis and Research Group, Yandex

Yandex.Toloka is a service of Swiss company Yandex Services AG

Tutorial schedule

Break: 30 min

Part VI: 20 min Set & Run Projects cont.

Part VII: 10 min Results & Conclusions

Labeling data with crowdsourcing

How to choose a reliable label? >

- How many labels per object?
- How much to pay for labels? >

Evaluation of labeling approaches Cost Accuracy VS

Labels with a maximal level of accuracy for a given budget or Labels of a <u>chosen accuracy level</u> for a <u>minimal budget</u>

 \mathbf{Q}

Key components of labeling with crowds

based pricing

Aggregation

Labeling data with crowds

Upload multiple copies of each object to label

Performers assign noisy labels to objects

Aggregate multiple labels for each object into a more reliable one

Process results

Yandex Toloka	Projects	Users	Skills	Profile	Messages
Projects Does the image contains traffic lights? pool					
pool –	closed				
POOL TASKS (File example for task uploading (tsv, UTF-8)) 💿					
🛨 Upload 🖺 files		Edit			• Preview
30 task suites		0 tr	aining Isk		
90 tasks		10	control task		

Multiclass labels

Project 1: Filter images

Are there shoes in the picture?

Notation

- Categories $k \in \{1, ..., K\}$. E.g.: O Cat \triangle Dog \Box Other
- > Objects $j \in \{1, ..., J\}$. E.g.:

- > Performers: $w \in \{1, ..., W\}$. E.g.: \bigoplus
 - $W_j \subseteq \{1, ..., W\}$ performers labeled object j

The simplest aggregation: Majority Vote (MV)

- The problem of aggregation: **Observe noisy labels** $\mathbf{y} = \{y_j^w | j = 1, ..., J \text{ and } w = 1, ..., W\}$
- Recover true labels $\mathbf{z} = \{z_j | j = 1, ..., J\}$ A straightforward solution:

 $\hat{z}_j^{MV} = \arg \max_{y=1,...,K} \sum_{w \in W_j} \delta(y = y_j^w)$, where $\delta(A) = 1$ if A is true and 0 otherwise

Performance of MV vs other methods

Zhou D. et al. Regularized minimax conditional entropy for crowdsourcing. 2015

Properties of MV

> All performers are treated similarly

All objects are treated similarly

Advanced aggregation: performers and objects

 Parameterize expertise of performers by e^w

Parameterize difficulty of objects
 by d_j

Advanced aggregation: latent label models

Latent label models: noisy label model

> A noisy label model $M_j^w = M(e^w, d_j)$

is a matrix of size *K*×*K* with elements

$$M_j^w[c,k] = Pr(\underline{Y_j^w} = k \mid \underline{Z_j} = c)$$

Latent label models: generative process

- > Noisy labels generation:
- 1. Sample z_j from a distribution $P_Z(p)$
- 2. Sample y_j^w from a distribution $P_Y(M_j^w[z_j,\cdot])$

In multiclassification, a standard choice for $P_Z(\cdot)$ and $P_Y(\cdot)$ is a Multinomial distribution Mult(\cdot)

Latent label models: parameters optimization

- The likelihood of y and z under the latent label model:

Estimate parameters and true labels by maximizing L(...)

Assumption: y_i^w is cond. independent of everything else given z_i , d_i , e^w

observed noisy label

$$\prod_{i \in J} \sum_{\substack{z_j \in \{1, \dots, K\}}} \Pr(z_j | p) \prod_{w \in W_j} \Pr(\frac{y_j^{w} | z_j, d_j, e^w}{y_j^{w} | z_j, d_j, e^w})$$

likelihood of noisy and true labels for object *j*

Latent label models: EM algorithm

>

$$\mathbb{E}_{\mathbf{z}}\log\Pr(\mathbf{y},\mathbf{z}) = \sum_{j\in J}\sum_{z_j\in\{1,\dots,K\}}\Pr(z_j|p)\log\prod_{w\in W_j}\Pr(z_j|p)\Pr(y_j^w|z_j,d_j,e^w)$$

E-step: Use Bayes' theorem for posterior distribution of \hat{z} given p, d, e: >

$$\hat{z}_j[c] = \Pr(Z_j = c | \mathbf{y}, p, \mathbf{d}, \mathbf{e}) \propto \Pr(Z_j = c | p) \prod_{w \in W_j} \Pr(\mathbf{y}_j^w | Z_j = c, \mathbf{d}_j, e^w)$$

>

 $(p, \mathbf{d}, \mathbf{e}) = \operatorname{argmax} \mathbb{E}_{\hat{\mathbf{z}}} \log$

- Analytical solutions
- Gradient descent

Maximization of the expectation of log-likelihood (LL), a lower bound on LL of y and z

M-step: Maximize the expectation of LL with respect to the posterior distribution of \hat{z} :

$$\operatorname{SPr}(z_j|p) \prod_{w \in W_j} \operatorname{Pr}(y_j^w|z_j, d_j, e^w)$$

Dawid and Skene model (DS):

- categories are different
- objects are similar
- performers are different >

Generative model of labels, abilities, and difficulties (GLAD):

- categories are similar
- objects are different
- performers are different

Minimax conditional entropy model (MMCE):

- categories are different
- objects are different
- performers are different

Dawid and Skene model (DS)

Dawid and Skene, Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm, 1979

- LLM with parameters:
 - > p vector of length K: p[i] = Pr(Z = c)
 - e^{w} matrix of size $K \times K$: $e^{w}[c,k] = \Pr(Y^{w} = k | Z = c)$

DS: parameters optimization

> E-step:

$$\widehat{z_j}[c] = \frac{p[c] \prod_{w \in W_j} e^w[c, y_j^w]}{\sum_k p[k] \prod_{w \in W_j} e^w[k, y_j^w]}, \qquad c = 1, \dots, K$$

> M-step: Analytical solution

$$e^{w}[c,k] = \frac{\sum_{j \in J} \widehat{z_{j}}[c] \delta(\underline{y_{j}^{w}} = k)}{\sum_{q=1}^{K} \sum_{j \in J} \widehat{z_{j}}[c] \delta(\underline{y_{j}^{w}} = q)}, \qquad k, c = 1, \dots, K$$
$$p[c] = \frac{\sum_{j \in J} \widehat{z_{j}}[c]}{L}, \qquad c = 1, \dots, K$$

Generative model of Labels, Abilities, and **Difficulties (GLAD)**

difficulty

Whitehill et al., Whose vote should count more: Optimal integration of labels from labelers of unknown expertise, 2009

- LLM with parameters:
 - > scalar $d_i \in (0, \infty)$
 - > scalar $e^w \in (-\infty, \infty)$
 - Model:

$$\left(\frac{Y_{j}^{w}}{K}=k|Z_{j}=c\right) = \begin{cases} a(w,j), & c=k\\ \frac{1-a(w,j)}{K-1}, c\neq k\\ 1\\ \end{cases}$$
where $a(w,j) = \frac{1}{1+\exp(-e^{w}d_{j})}$

GLAD: parameters optimization

> Let
$$a(w,j) = \frac{1}{1 + \exp(-e^w d_j)}$$
 and $P(z)$

E-step:

$$\widehat{z_j}[c] \propto \mathbb{P}(Z_j = c) \prod_{w \in W_j} a(w, j)^{\delta\left(\frac{y_j^w}{j} = c\right)} \left(\frac{1 - a(w, j)}{K - 1}\right)^{\delta\left(\frac{y_j^w}{j} \neq c\right)}, \ c = 1, \dots, K$$

M-step: estimate (d, e) for given \hat{z} using gradient descent $(\mathbf{d}^{\mathsf{t}}, \mathbf{e}^{\mathsf{t}}) = \operatorname{argmax} \sum_{i \in I} \left[\mathbb{E}_{\widehat{z_i}} \right]_{i \in I}$

 z_i) be a predefined prior (e.g., $P(z_i) = \frac{1}{K}$)

$$\log P(z_j) + \sum_{w \in W_j} \mathbb{E}_{\widehat{z_j}} \log \Pr(y_j^w | z_j) \right]$$

MiniMax Conditional Entropy model (MMCE)

Find parameters that minimize the maximum conditional entropy of observed labels:

LLM with parameters:

object's confusability matrix

 z_j

 d_{i}

performer's expertise matrix

 e^w

Noisy label model: > $\Pr(\underline{Y_j^w} = k | \underline{Z_j} = c) = \exp(\underline{d_j}[c, k] + e^w[c, k])$

 y_j^w

 $j \in \mathbb{Z}$

(-J-)

$$\operatorname{ax}_{P} - \sum_{\substack{j \in J \\ c \in \{1, \dots, K\}}} Q(Z_{j} = c) \sum_{\substack{w \in W \\ k \in \{1, \dots, K\}}} P(Y_{j}^{w} = k | Z_{j} = c) \log P(Y_{j}^{w} = k | Z_{j})$$

> d_i – matrix of size $K \times K$

 e^{w} – matrix of size $K \times K$

Summary of aggregation methods

Key components of labeling with crowds

Incremental relabeling

aka dynamic overlap

Pool settings: dynamic overlap

	Quality control		
	Add rules to get more accurate responses. All rules work independently.		
NON-AUTOMATIC ACCEPTANCE	No REVIEW PERIOD IN DAYS		
CAPTCHA FREQUENCY 🕐	None ~		
	+ Add Quality Control Rule		
	į		
	Overlap		
	Specify how many performers you want to complete each task in the pool.		
OVERLAP 🕐			
DYNAMIC OVERLAP 🕐	Off		
	Crossed / www.ality.watie		
	Speed/quality ratio		
	Specify additional conditions for selecting performers by their rating in Toloka. This will improve quality, but may reduce the speed of task completion because there will be fewer performers available for completing tasks. Learn more		
	Top % Online Time		
	Specify the percentage of top-rated active users who can access tasks in the pool.		

Incremental relabeling problem

Obtain aggregated labels of a desired level of quality using a fewer number of noisy labels

Incremental relabeling scheme (IRL)

Request a label for each object

In real time IRL algorithm receives: (1) previously accumulated labels (2) new labels

Decides: (1) which objects are labeled (2) which objects to relabel

Repeat until all tasks are labeled

Notations

Consider one object

> $z \in \{1, \dots, K\}$ - latent true label

> $y_w \in \{1, ..., K\}$ - observed noisy label from performer w:

Notations

Noisy label model for performer w: > $M_w \in [0,1]^{K \times K}$: $\Pr(Y_w = k | Z = c) = M_w[c,k]$

> Prior distribution: $Pr(Z = k) = p_k$

Posterior distribution

- > $\{y_{w_1}, ..., y_{w_n}\}$ accumulated noisy labels for the object
- > Using Bayes rule: $Pr(Z = k | \{y_{w_1}, ..., y_{w_n}\})$ $= \frac{Pr(Z = k)Pr(\{y_{w_1}, ..., y_{w_n}\}|Z = k)}{Pr(\{y_{w_1}, ..., y_{w_n}\})}$ $= \frac{p_k \prod_{i=1}^n M_{w_i}[k, y_{w_i}]}{\sum_{t=1}^K p_t \prod_{i=1}^n M_{w_i}[t, y_{w_i}]}$

Expected accuracy of aggregated labels

- > Let A be an aggregation model, e.g. MV, DS, GLAD,...
- Denote aggregated label $z^A = A(\{y_{W_1}, \dots, y_{W_n}\})$
- Expected accuracy of aggregated labels given noisy labels is

$$E(\delta(z = z^{A}) | \{y_{w_{1}}, \dots, y_{w_{n}}\}) = \Pr(z = z^{A} | \{y_{w_{1}}, \dots, y_{w_{n}}\})$$

Stop labeling if $E(\delta(z = z^A) | \{y_{W_1}, \dots, y_{W_n}\}) \ge C$

Sheng VS, Provost F, Ipeirotis PG. Get another label? improving data quality and data mining using multiple, noisy labelers. KDD 2008

parameter

Expected accuracy of z^A

Threshold in IRL: cost – accuracy trade-off

Key components of labeling with crowds

Performance-based pricing

aka dynamic pricing

Pool settings: dynamic pricing

POOL NAME (VISIBLE ONLY TO YOU)	Are there traffic lights in the picture?	
	✓ Use project description	
PUBLIC DESCRIPTION 📀		
	Add a private description	
	Price per task suite	
	You can add one or more tasks to the page. Enter the total price for all tasks on the	
PRICE IN US DOLLARS 🕐	0.07 FEE 😨	
	+ Dynamic pricing	
	Performers Copy settings from	
	Filter performers who can access the task.	
	Toloka has users from different countries, so don't forget to filter by language and region. Learn more	
ADULT CONTENT 🕐		
	Add filter V Create skill	

Labeling as a game: notation

Labeling as a game: formalization

> Each performer *w* chooses a level of effort *h* for labeling object to maximize earnings per unit of spent effort:

> The requester chooses a pricing p(a) to minimize payments per unit of obtained value

 $\rightarrow \max_{a \in [0,1]}$

Labeling as a game: incentive compatible pricing

Assume $a_w(h)$ is a linear function of h:

if the pricing p(a) for each label is proportional to its accuracy a.

- $a_w(h) = c_1 h + c_0$ Accuracy
- The requester and performers maximize their utility simultaneously

Performance-based pricing in practice: settings

Price p for the level of accuracy a_0 : $Pr(\hat{z} = z) \ge a_0$ E.g.:

- $\hat{q}_{w} = \Pr(y^{w} = z)$ estimated quality level of performer w,
 - e.g. the fraction of correct labels for golden set (GS):

5 correct GS among 10 $\hat{q}_{w} = 0.5$

16 correct GS among 20 $\hat{q}_{w} = 0.8$

100 correct GS among 100 $\hat{q}_w = 1$

Performance-based pricing in practice: settings

> Aggregation $\hat{z}_{j}^{wMV} = \arg \max_{v=1,...,K} \sum_{w \in V} \sum_{w \in$

IRL algorithm is based on the expected accuracy of \hat{z}_i^{WMV}

$$\sum_{w \in W_j} \hat{q}_w \delta(y = y_j^w)$$

Performance-based pricing in practice

Pricing rules

- 1. If $\hat{q}_w \ge a_0$, then the price is p
- 2. Else find *n*:

$$\sum_{k=0}^{n/2} {n \choose k} \hat{q}_{w}^{n-k} (1 - \hat{q}_{w})^{k} \ge a_{0}$$

Expected accuracy for MV
The price is p/n

 $a_0 = 0.99$

0.3\$

Key components of labeling with crowds

Incremental relabeling

Performancebased pricing

Thank you! Questions?

Dmitry Ustalov

Analyst at Data Analysis and Research Group

dustalov@yandex-team.ru

https://research.yandex.com/tutorials/crowd/sigmod-2020

