Vandex

Crowdsourcing Practice for Efficient Data Labeling: Aggregation, Incremental Relabeling, and Pricing

Alexey Drutsa, Valentina Fedorova, Dmitry Ustalov, Olga Megorskaya, Evfrosiniya Zerminova, Daria Baidakova

Part VIII

Discussion of the projects' results

Conclusions

Alexey Drutsa, Head of Efficiency and Growth Division, Yandex

Yandex. Toloka is a service of Swiss company Yandex Services AG

Tutorial schedule

Introduction: 30 min

Part I: 30 min
Crowdsourcing for
SDC

Coffee break: 15 min

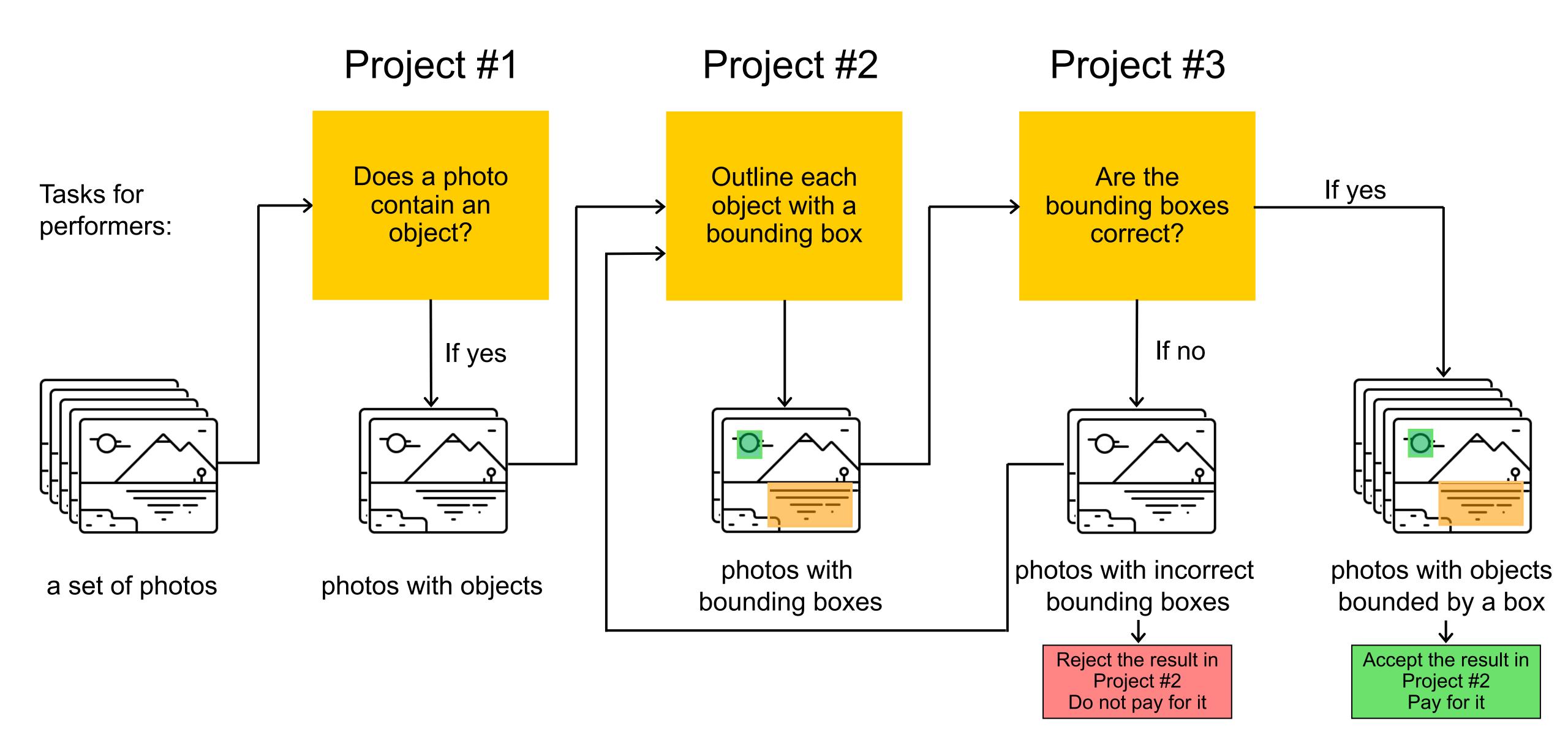
Part II: 35 min Key components

Part III: 10 min Intro to crowd platform

Part IV: 60 min
Data labeling demos
for SDC

Lunch break: 60 min

Part V: 20 min
Brainstorming
pipeline

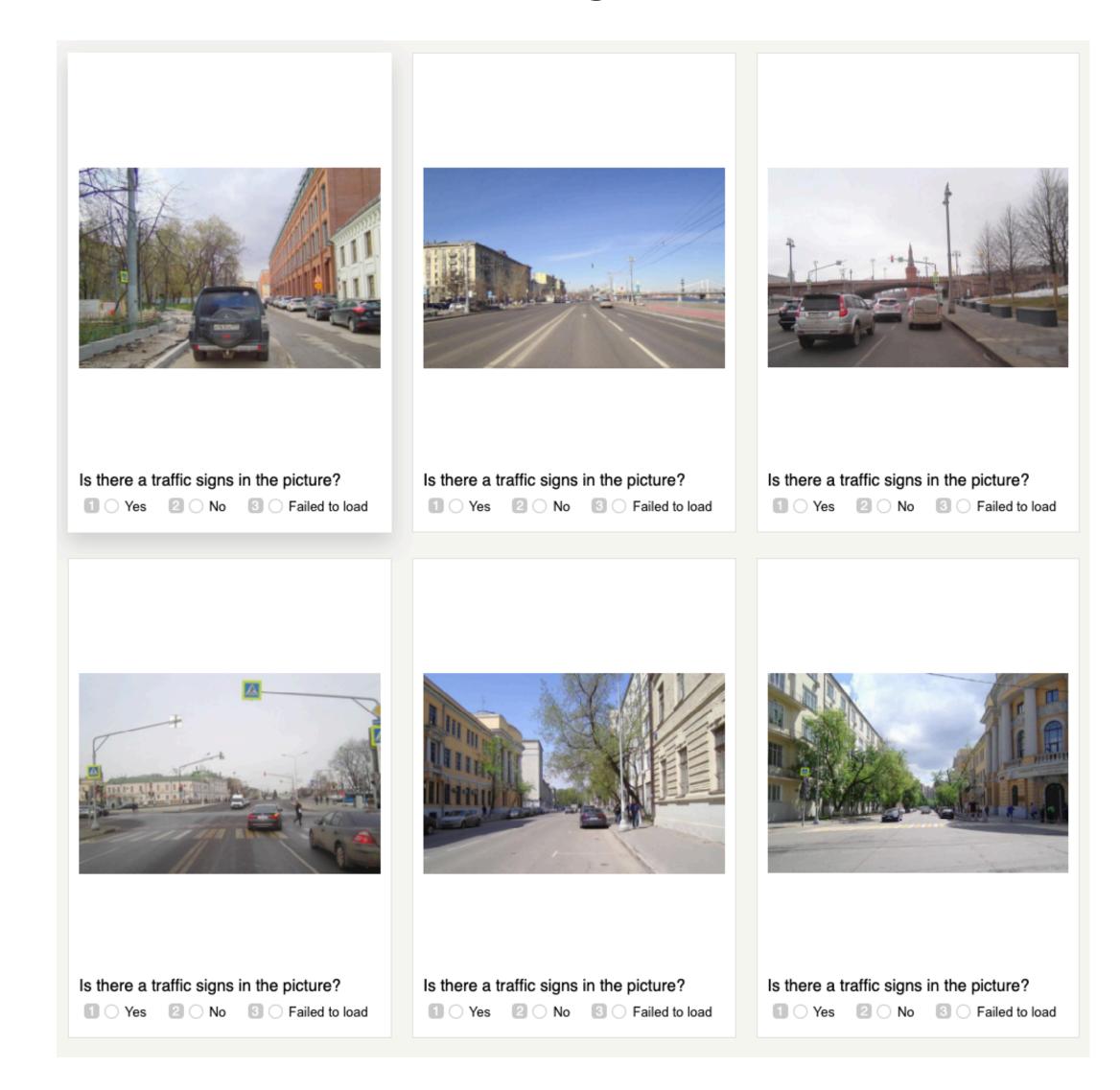

Part VI: 90 min Set & Run Projects cont.

Coffee break: 15 min

Part VII: 60 min
Theory on
aggregation, IRL and
pricing

Part VIII: 15 min Results & Conclusions

Reminder: we implemented the pipeline


Project #1: Filter out photos without objects

Task

Does a photo contain objects of desired type?

Our results:

- > 100 photos evaluated
- > within 4 min on real performers
- > cost: \$0.3 + Toloka fee

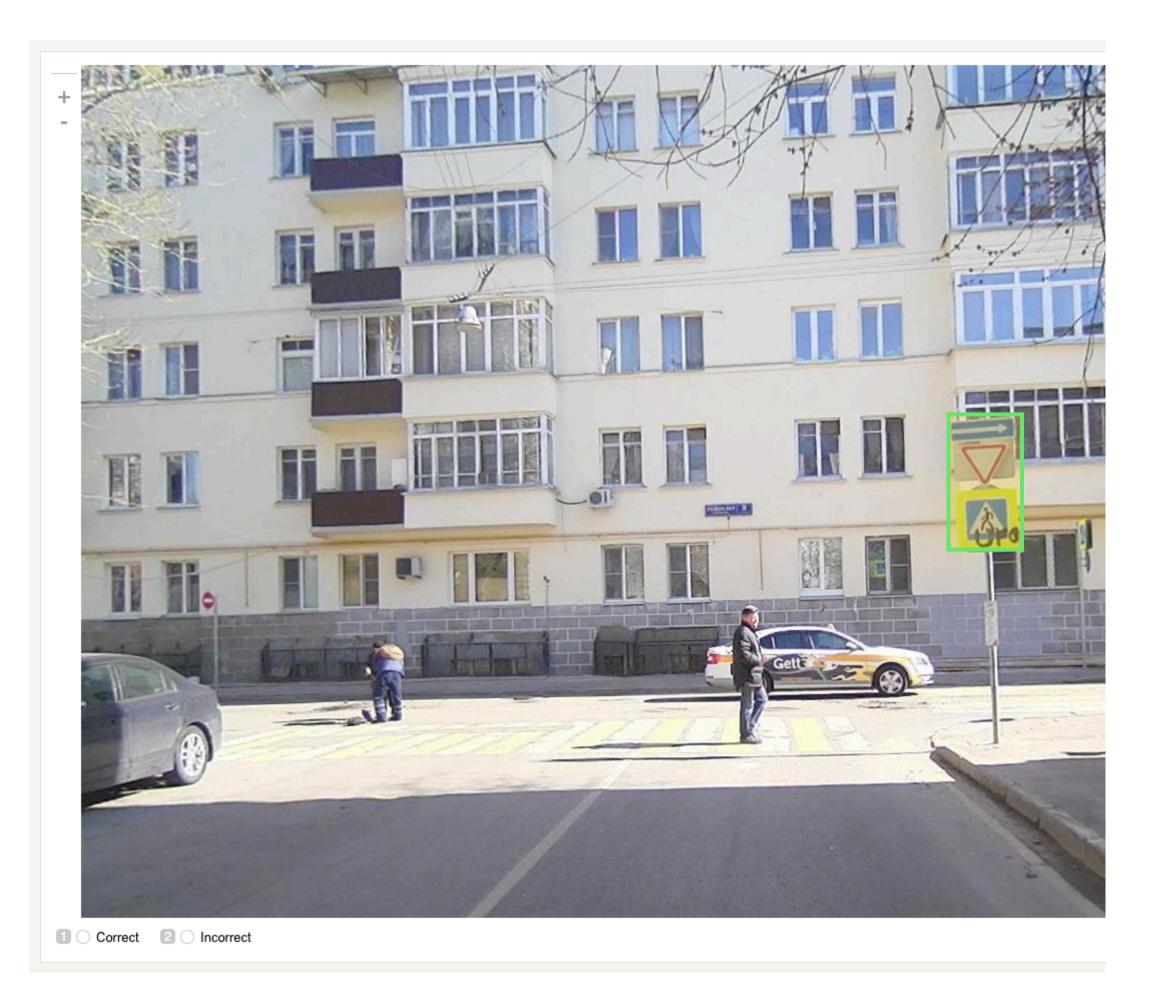
Project #2: Outlining objects with rectangles

Task

Outline each object of desired type with a bounding box

Our results:

- > 67 photos processed
- > within 5.5 min on real performers
- > cost: \$0.67 + Toloka fee

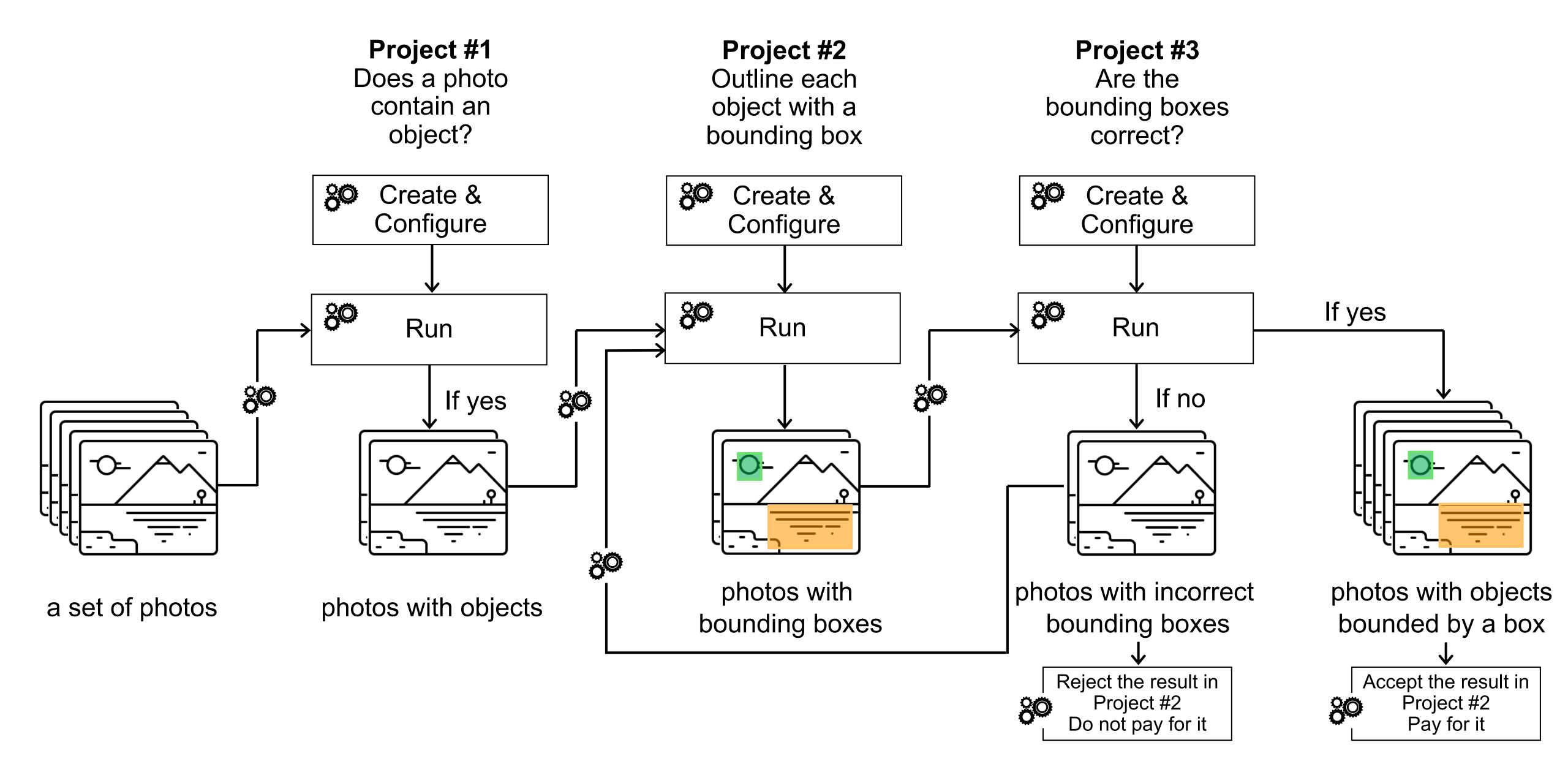

Project #3: Accept correct bounding boxes

Task

Are the objects of desired type outlined with bounding boxes correctly?

Our results:

- > 90 photos evaluated
- > within 5 min on real performers
- > cost: \$0.36 + Toloka fee


Statistics over the whole pipeline

- 100 photos processed to highlight desired objects
- within 14.5 min on real performers
- total cost: \$1.33 + Toloka fee
- Quality of the final result (via manual assessment):
- > Recall: 90% (measured on results of Project #1)
- > Precision: 86% (measured on results of Project #2)

Afterparty: upgrade your pipeline

- To obtain more comprehensive data
- > Use Polygons instead of Bounding boxes
- > Highlight more object types
- To reduce costs
- > Use incremental relabeling aka Dynamic overlap
 - To improve quality
- > Use dynamic pricing
- > Add more Golden Sets and hints
- > Experiment with aggregation methods
- > Add training for workers

API of Yandex.Toloka

API of Yandex.Toloka

Allows you to automate all steps of our pipeline

Discover at: https://yandex.com/dev/toloka/

Crowdsource all types of data

Search Relevance

Moderation

Generation of content

Computer vision

Speech Technologies

References: Aggregation

- [1] Dawid, A. P. and Skene, A. M, Maximum likelihood estimation of observer error-rates using the EM algorithm, Applied statistics 1979
- [2] Whitehill, J., Wu, T., Bergsma, J., Movellan, J. R, Ruvolo, P. L, Whose vote should count more: Optimal integration of labels from labelers of unknown expertise}, NIPS 2009
- [3] Zhou, D., Liu, Q., Platt, J. C, Meek, C., Shah, N. B, Regularized minimax conditional entropy for crowdsourcing, arXiv preprint 2015
- [4] Raykar, V. C, Yu, S., Zhao, L. H, Valadez, G. H., Florin, C., Bogoni, L., Moy, L., Learning from crowds, JMLR 2010
- [5] Snow, R., O'Connor, B., Jurafsky, D., Ng, A. Y, Cheap and fast---but is it good?: evaluating non-expert annotations for natural language tasks, EMNLP 2008
- [6] Ruvolo, P., Whitehill, J., Movellan, J. R, Exploiting Commonality and Interaction Effects in Crowdsourcing Tasks Using Latent Factor Models, NIPS '13 Workshop on Crowdsourcing: Theory, Algorithms and Applications
- [7] Faridani, S. and Buscher, G., LabelBoost: An Ensemble Model for Ground Truth Inference Using Boosted Trees, HCOMP 2013
- [8] Welinder, P., Branson, S., Perona, P., Belongie, S. J , The multidimensional wisdom of crowds, NIPS 2010
- [9] Jin, Y., Carman, M., Kim, D., Xie, L., Leveraging Side Information to Improve Label Quality Control in Crowd-Sourcing, HCOMP 2017
- [10] Imamura, H., Sato, I., Sugiyama, M., Analysis of Minimax Error Rate for Crowdsourcing and Its Application to Worker Clustering Model, arXiv preprint 2018

References: Aggregation

- [11] Sheshadri, A. and Lease, M., Square: A benchmark for research on computing crowd consensus, HCOMP 2013
- [12] Kim, H. and Ghahramani, Z., Bayesian classifier combination, AISTATS 2012
- [13] Venanzi, M., Guiver, J., Kazai, G., Kohli, P., Shokouhi, M., Community-based bayesian aggregation models for crowdsourcing, WWW2014
- [14] Vuurens, J., de Vries, A. P, Eickhoff, C., How much spam can you take? an analysis of crowdsourcing results to increase accuracy, SIGIR Workshop CIR 2011
- [15] Chen, X. and Bennett, P. N and Collins-Thompson, K. and Horvitz, E., Pairwise ranking aggregation in a crowdsourced setting, WSDM 2013
- [16] Liu, C. and Wang, Y., Truelabel+ confusions: A spectrum of probabilistic models in analyzing multiple ratings, ICML 2012

References: Incremental relabeling & Pricing

- [17] Ipeirotis, P. G and Provost, F. and Sheng, V. S and Wang, J., Repeated labeling using multiple noisy labelers, KDD 2014
- [18] Abraham, I., Alonso, O., Kandylas, V., Patel, R., Shelford, S., Slivkins, A., How many workers to ask?: Adaptive exploration for collecting high quality labels, SIGIR 2016
- [19] Ertekin, S., Hirsh, H., Rudin, C., Learning to predict the wisdom of crowds, arXiv preprint 2012
- [20] Lin, C. H, Mausam, M., Weld, D. S, To Re(label), or Not To Re(label), HCOMP 2014
- [21] Zhao, L., Sukthankar, G., Sukthankar, R., Incremental relabeling for active learning with noisy crowdsourced annotations, PASSAT/SocialCom 2011
- [22] Wang, J., Ipeirotis, P. G, Provost, F., Quality-based pricing for crowdsourced workers, working paper, 2013
- [23] Cheng, J., Teevan, J., Bernstein, M. S, Measuring crowdsourcing effort with error-time curves, CHI 2015
- [24] Ho, C., Slivkins, A., Suri, S., Vaughan, J. W., Incentivizing high quality crowdwork, WWW 2015
- [25] Difallah, D. E., Catasta, M., Demartini, G., Cudr`e-Mauroux, P., Scaling-up the crowd: Micro-task pricing schemes for worker retention and latency improvement, HCOMP 2014
- [26] Yin, M., Chen, Y., Sun, Y., The effects of performance-contingent financial incentives in online labor markets, Al 2013
- [27] Shah, N., Zhou, D., Peres, Y., Approval voting and incentives in crowdsourcing, ICML 2015
- [26] Shah, N. and Zhou, D., No oops, you won't do it again: Mechanisms for self-correction in crowdsourcing, ICML 2016

References: Tutorials

- [27] Crowdsourcing: Beyond Label Generation, Vaughan, J. W. KDD 2017
- [28] Crowd-Powered Data Mining, Li, G., Wang, J., Fan, J., Zheng, Y., Chai, C., KDD 2018
- [29] Social Spam Campaigns Social Spam, Campaigns, Misinformation and Crowdturfing, Lee, K., Caverlee, J., Pu, C., WWW2014
- [30] From Complex Object Exploration to Complex Crowdsourcing, Amer-Yahia, S., Roy, S.B., WWW 2015
- [31] Crowdsourced Data Management: Overview and Challenges, Li, G., Zheng, Y., Fan, J., Wang, J., Cheng, R, SIGMOD 2017
- [32] Spatial Crowdsourcing: Challenges, Techniques, and Applications, Tong, Y., Chen, L., Shahab, C., VLDB 2016
- [33] Truth Discovery and Crowdsourcing Aggregation: A Unified Perspective, Gao, J., Li, Q., Zhao, B., Fan, W., Han, J., VLDB 2015
- [34] Data-Driven Crowdsourcing: Management, Mining, and Applications, Chen, L., Lee, D., Milo, T., ICDE 15
- [35] Practice of Efficient Data Collection via Crowdsourcing at Large-Scale, Drutsa A., Fedorova V., Megorskaya O., Zerminova E., KDD 2019
- [36] Practice of Efficient Data Collection via Crowdsourcing: Aggregation, Incremental Relabelling, and Pricing, Drutsa A., Fedorova V., Ustalov D., Megorskaya O., Zerminova E., Baidakova D., WSDM 2020

Yandex

Thank you! Questions?

Alexey Drutsa

Head of Efficiency and Growth Division

adrutsa@yandex-team.ru

https://research.yandex.com/tutorials/crowd/cvpr-2020