

Alexey Drutsa, Valentina Fedorova, Dmitry Ustalov, Olga Megorskaya, Evfrosiniya Zerminova, Daria Baidakova

Practice of Efficient Data
Collection via Crowdsourcing:
Aggregation, Incremental
Relabelling, and Pricing

WSDM 2020 hands-on tutorial

Part V:

Effective quality control
and task interface:
details
Alexey Drutsa,
Head of Efficiency and Growth Division

Yandex.Toloka is a service of Swiss company Yandex Services AG

Tutorial outline

Part I: 40 min
Main Components

Part II: 25 min
Brainstorming
pipeline

Introduction: 20 min

Coffee break:
30 min

Part III: 10 min
Introduction to
Crowd Platform

Part IV: 85 min
Set & Run Projects

Part V: 35 min
Interface & Quality
control

Lunch break:
90 min

Part VI: 25 min
Theory on
Aggregation

Coffee break:
30 min

Part VI: 60 min
Set & Run Projects
cont.

Part VII: 20 min
Incremental
relabeling and pricing

Part VIII: 10 min
Results &
Conclusions

Quality control:
the rate of correct answers

Task sequence

Tasks executed
by a performer ……

𝑦" 𝑦"#$ 𝑦"#% 𝑦"#& 𝑦"#' 𝑦"#(𝑦"#) 𝑦"#* 𝑦"#+
Signals of
answer correctness

1 0 1 1 1 0 1 1 1For instance,
binary, 𝑦, ∈ {0,1}

𝑛, window size

Estimation of correctness rate

▎ To estimate the probability of a correct answer use

▎ Window size (𝑛) is a balance between
› accuracy of the estimate

and
› fast reaction to changes in performer quality

ℙ correct ≈
1
𝑛
;
,<$

=

𝑦, ±
1
2 𝑛

Sources for correct answer signal

▎How can we get 𝑦,?

› Control tasks
› Agreement with aggregated answer
(e.g., Majority Vote)

› Post-verification

Control tasks

▎ Pros:
› Signal is obtained instantly
› Signal has high confidence on tasks where obtained

▎ Cons:
› Tasks for labelling do not provide this signal (=>signal for a fraction of tasks)
› Creation and maintenance of a set of control tasks

▎ Costs (extra charge for quality control)
› Control task creation
› Depends on the frequency of control tasks occurred in the task sequence

You can apply adaptive frequency to optimize costs

You can apply incremental relabelling to optimize costs

Agreement with aggregated answer

▎ Pros:
› Easy to implement

▎ Cons:
› Signal is obtained with latency
› Works well only if most workers have good quality
› Works well for tasks with small # of answer variants (e.g., classification)

▎ Costs (extra charge for quality control)
› Multiplied by the overlap used

Agreement may fail against coordinated attacks

𝑝 is the fraction of coordinated spammers among performers
𝑛 is the overlap for Majority Vote model

For instance:
If 𝑛 = 3 and 𝑝 = 0.1
▎ The probability of majority with an incorrect answer is 2.8%
in fact, is larger since other performers may accidentally agree with spammers

ℙ #𝑚FGH >
𝑛
2

= ;
"< =

%

=

𝐶="𝑝" 1 − 𝑝 =L"

Post-verification

▎ Pros:
› Can be applied to any task type (even with a sophisticated answer)

▎ Cons:
› Signal is obtained with latency
› Requires efforts to construct a pipeline

▎ Costs (extra charge for quality control)
› Cost of verification tasks

You can apply selective verification to optimize costs

Non-binary penalty

▎You can set different penalty 𝑦, ∈ [0,1]
▎for different signals

For instance:
› task consists of several answers of different importance
› level of confidence of the aggregated answer
› level of expertise of the performer who post-verifies

Quality control:
undesired behavior

Performer behavior

▎Correct answers to your tasks are not
▎the sole signal of performer quality

For instance, take care of such characteristics:
› Time of task execution
› Usage of UI control elements within task execution
› CAPTCHA

Use them to filter out (ban) performers with low quality of high confidence

Fast responses

▎There is a lower bound on time required
▎to execute your task with good quality

› Estimate this time based on behavior of a set of performers
› Calculate the number or the rate of tasks executed too fast

Verification of action execution

▎Some tasks require usage of certain
▎UI control elements

For instance:
› check whether a link has been visited
› check whether a video has been played

CAPTCHA

▎Instead of revoking access to your tasks,
▎you can ask crowdsourcing platform
▎to show CAPTCHA to a performer

You get an additional signal to decide whether you face a robot or not

Quality control:
skills

Skill is a variable assigned to a performer

▎ Can be used to automatically calculate
› answer correctness rates (via control tasks, agreement, post-verification)
› behavioral features (e.g., fast response rate)
› binary information on execution of particular projects
› any their combinations and other features

▎ Can be used for automatic decision making:
› access control to certain projects and tasks
› e.g., revoke access to your tasks if a skill becomes too low

Thinking (cogitation) vs reflexes

› Skills based on a single signal are
easy to game

▎ It is difficult to force a performer
▎ to think (cogitate)
▎ instead of
▎ to use/train reflexes

tasks made by a performer
Av

er
ag

e
tim

e
w

ith
in

 p
er

fo
rm

er
s

A representative crowd project

Best practice for a good skill

▎Combine different signals to get
▎a skill robust to gaming

› Combine agreement signal with control tasks or post-verification
› Add behavioral information: execution time, CAPTCHA, etc.

▎Use this skill in quality-based pricing

Quality control:
performer life cycle

Training task

▎Train performers to execute your tasks

› All tasks are control ones
› There are hints that explain incorrect answers

Exam task

▎Control the results of training

› All tasks are control ones
› No hints and explanations

› A good exam should be:
1. passable
2. regularly updated
3. small

Recommended life cycle of performers

All
performers

Training Exam Real tasks

Rehabilitation

Access denied

Recommended life cycle of performers

All
performers

Training Exam Real tasks

Rehabilitation

Access denied

Let quality be controlled by means of a skill 𝐒
Set skill 𝐒 Update skill 𝐒

Set skill 𝐒

𝐒 > 𝑌

𝐒 ≤ 𝑌

𝐒 < 𝑍𝐒 > 𝑍

𝐒 ≤ 𝑇

𝐒 > 𝑋

𝐒 ≤ 𝑋

Set skill 𝐒

Rehabilitation task

▎Give a change to those who failed
▎the skill threshold accidentally

› Rehabilitation is similar to an exam task, but with another access criterion
› Remind that there is a chance to observe low quality of a good performer

ℙ correct ≈
1
𝑛
;
,<$

=

𝑦, ±
1
2 𝑛

Grant initial access to top performers

All
performers

Training Exam Real tasks

Rehabilitation

Access denied

Access for
performers

having
platform rating

>
threshold

Platform rating *

▎is calculated based on performer behavior
▎on all existed tasks within the platform

* is available on Yandex.Toloka

Interface. Introduction

Task in the eyes of the performers

Web-page with specific features

› Long run time
› Repetitive actions
› Concentration
› Speed

Structure of a task interface

When in doubt, mumble.

Structure of a task interface

When in doubt, mumble.

Task block

Subject of evaluation

Evaluation block

Verdict

9 golden rules of interface
structure

Why is it important?

› Performer’s time
› Speed and data labelling volumes
› Manager’s time
› Quality of the results
› Project’s rating
› Task simplification thanks to the interface

36

Rule #1. Cross-platform compatibility

Possible limitations for mobile services:
› Task difficulty
› Media Content, Devices, and Browsers

App
> 30%
performers

Web-
version

Rule #1. Cross-platform compatibility

Web version Android App IOS App

Task: evaluate sound quality in wav audio files

Rule #1. Cross-platform compatibility

Task: draw a polygon around every road sign

Rule #1. Cross-platform compatibility

▎ Challenge: to outline every single road sign

Task: draw a polygon around every road sign

Rule #1. Cross-platform compatibility

Task: evaluate the phrase and search query match

Rule #1. Cross-platform compatibility

Task: evaluate the phrase and search query match

Rule #1. Cross-platform compatibility

Task: evaluate the phrase and search query match

Cut off text

Hotkeys

Empty space

Rule #1. Cross-platform compatibility

Task: evaluate the phrase and search query match

Rule #2. Hotkeys

› Used by about 28% of performers
› Affect task completion speed
› You can assign hotkeys to any action
› Hidden hotkeys should be documented

▎ Ideal scenario: the task can be completed without using a mouse

Rule #2. Hotkeys

Task: evaluate functionality of a game in a browser
(works with a keyboard)

Rule #2. Hotkeys

Task: tell whether the game works in a web browser
(works with a keyboard)

Rule #2. Hotkeys

Task: tell whether the game works in a web browser
(works with a keyboard)

Rule #3. Action and data check

We can check if the performer:

› Watched the video or listened to the
audio

› Went to external resources
› Provided correct input data
› Spent enough time on each task

Performer

Finish the task
as fast as possible!

Rule #3. Action and data check

Rule #4. Test the task

Always test the task before publishing it

› Preview option
› Test task pool in Toloka sandbox

Rule #5. Minimize external resources usage

▎ Spoiler: not always applicable

› Impossible to control performer’s actions outside of the task interface
› External resources might not always work properly

Rule #5. Minimize external resources usage

› Show all information inside the task
› Copy data to your own storage
› Check performers’ actions and their input data

▎ Idea: show screenshots instead of the links

Rule #6. Avoid experimental design

Signs:

› Odd layout of typical interface elements

› Variety of bright and different colors

› The presence of conspicuous elements with an exclusively artistic function

Rule #6. Avoid experimental design

Rule #6. Avoid experimental design
Extra nesting of the

blocks Unnecessary bright color

All text is in one font

A lot of empty space on
the right side of the block

Odd display of verditcts
2 types of patterns

Rule #6. Avoid experimental design

Rule #7. Efficient space usage

› Group the elements within your task block
› Absence of empty spaces
› Highlight most important information

▎ Ideal scenario: one task perfectly fits the size of a monitor

Rule #7. Efficient space usage

Rule #7. Efficient space usage

Empty space

Scrolling

Rule #7. Efficient space usage

Rule #8. Constructing task suit

Page with many tasks

Check list:
› Absence of empty spaces
› Equal width of the task blocks
› No more than 2 (3) tasks in a row

Rule #8. Constructing task suit

Rule #9. Limit the number of elements in your
interface

› Buttons
› Links
› Images
› Other elements, that with a particular function

▎ The presence of any interface element must be justified

▎ Every element of the interface should be useful for the performer

Rule #9. Limit the number of elements in your
interface
Task: evaluate which translation from Russian to English is better

Rule #9. Limit the number of elements in your
interface
Task: evaluate which translation from Russian to English is better

Bonus! Check list

1. Check the adaptability of the task template
2. Test task submission in the preview mode
3. Check the availability and functionality of hotkeys
4. Make sure that the required actions are checked
5. Check for the "not opening" option in tasks with external resources
6. Make sure that there are no experimental design solutions
7. Avoid page interface with a large number of tasks and different sizes of information in it
8. Make sure that there are no unnecessary interface elements in the task

Thank you!
Questions?

Alexey Drutsa
Head of Head of Efficiency and Growth Division

adrutsa@yandex-team.ru

https://research.yandex.com/tutorials/crowd/wsdm-2020

