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Tutorial outline

Part I: 40 min
Main Components

Part II: 25 min
Brainstorming 
pipeline

Introduction: 20 min

Coffee break: 
30 min

Part III: 10 min
Introduction to
Crowd Platform

Part IV: 85 min
Set & Run Projects

Part V: 35 min
Interface & Quality 
control

Lunch break: 
90 min

Part VI: 25 min
Theory on 
Aggregation

Coffee break: 
30 min

Part VI: 60 min
Set & Run Projects 
cont.

Part VII: 20 min
Incremental 
relabeling and pricing

Part VIII: 10 min
Results & 
Conclusions



Reminder: we implemented this pipeline

a set of photos photos with items

Project #1 Project #2 Project #3

Tasks for
performers:

Project #4

OR

photos w/ best substitute

photos with correct 
similar items

photos with incorrect 
similar items

Reject the result in 
Project #2

Do not pay for it

Accept the result in 
Project #2
Pay for it

Does a photo 
contain a 

specific item?

Find a similar 
item in the

online store

Is the found item (project 2) 
similar to the initial one?

(post-verification) 

Which of the
found items

is more similar 
to the initial

one?

If yes If yesIf no



Project #1: Filter out photos without objects

▎ Task
› Does a photo contain an item of 

desired type?

▎ Our results
› Amount: 30 photos 
› Overlap: 3
› Time: 5 min 
› Cost: $0.09 + Toloka fee



Project #2: Searching for similar items on 
the online store
▎ Task
› Find a similar item on the internet

▎ Our results
› Amount: 25 photos 
› Overlap: 3
› Time: 25 min 
› Cost: $1.74 + Toloka fee



Project #3: Accept correctness of items found

▎ Task
› Is the found item (project 2) similar to 

the initial one?

▎ Our results
› Amount: 75 photos 
› Overlap: 3
› Time: 3 min 
› Cost: $0.20 + Toloka fee



Project #4: Decide which substitute works best

▎ Task
› Which of the items is similar to the 

initial one?

▎ Our results
› Amount: 62 photos 
› Overlap: 3
› Time: 10 min 
› Cost: $0.10 + Toloka fee



Statistics over the whole pipeline

▎ 30 photos processed to find the substitute items and evaluate their 
similarity

▎ within 45 min on real performers

▎ total cost: $2.15 + Toloka fee



Afterparty: upgrade your pipeline

▎ To obtain more comprehensive data
› Use more item types at the same time

▎ To reduce costs
› Use incremental relabeling aka Dynamic overlap

▎ To improve quality
› Use dynamic pricing
› Add more Golden Sets and hints
› Experiment with aggregation methods
› Add training for performers



API of Yandex.Toloka

▎ Allows you to automate all steps of our pipeline

Discover at: https://yandex.ru/dev/toloka/



Crowdsource all types of data

Search Relevance Moderation

Speech Technologies
Computer vision

Generation of content
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Thank you!
Questions?

Alexey Drutsa
Head of Head of Efficiency and Growth Division

adrutsa@yandex-team.ru

https://research.yandex.com/tutorials/crowd/wsdm-2020


