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Tutorial outline

Introduction: 20 min

Part |: 40 min
Main Components

!

Part lll: 10 min
Introduction to
Crowd Platform

!

v
Part VI: 25 min
Theory on
Aggregation

d

Part IV: 85 min
Set & Run Projects

Coffee break:
30 min

y

Coffee break:
30 min

!

Part VI: 60 min
Set & Run Projects
cont.

!

Lunch break:
90 min

Part ll: 25 min
Brainstorming
pipeline

!
Part V: 35 min

Interface & Quality
control

y
Part VII: 20 min
Incremental
relabeling and pricing
y
Part VIilI: 10 min

Results &
Conclusions




Reminder: we implemented this pipeline

Tasks for
performers:

a set of photos

Project #1

Does a photo
contain a
specific item?

If yes

photos with items

Project #2

Find a similar
item In the
online store

i B

Project #3 Project #4

Which of the
Is the found item (project 2) found items
— similar to the initial one? — IS more similar
(post-verification) to the initial
one?
If no ‘ ‘ If yes
] 188

S or =24

photos w/ best substitute

photos with incorrect photos with correct
similar items similar items

l l

Reject the result in Accept the result in
Project #2 Project #2
Do not pay for it Pay for it




Project #1: Filter out photos without objects

Task

> Does a photo contain an item of
desired type?

Our results

Amount: 30 photos
Overlap: 3

Time: 5 min

Cost: $0.09 + Toloka fee
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Project #2: Searching for similar items on
the online store

Task
> FInd a similar item on the internet

Find the same shoes on ASOS

ASOS

Shoes must be the same color and the
same style.

Our results

Amount: 25 photos
Overlap: 3

Time: 25 min

Cost: $1.74 + Toloka fee

Paste the link here

Upload the image here. The image should
show the shoes you found.
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Project #3: Accept correctness of items found

VoWV NV WV

Task

Is the found item (project 2) similar to
the initial one?

Our results

Amount: 75 photos
Overlap: 3

Time: 3 min

Cost: $0.20 + Toloka fee

Check that the uploaded image matches

the product in the store.
Check the item

Are these shoes similar to each other?

Shoes must be the same color and the
same style.

Check that the uploaded image matches

the product in the store.

Check the item

Are these shoes similar to each other?

Shoes must be the same color and the
same style.



Project #4: Decide which substitute works best

Task

n n n Gotosite  https:/www.asos.com/base-london/base-london-dansey-formal-shoes-in-black-leather/prd/13910020?clr=... https:/www.asos.com/ted-baker/ted-baker-circass-toe-cap-shoes-in-black/prd/13951657 2clr=black&colour... ~ Go to site
| l | l ]

=
= 4 b
= : L |
m Search for items, brands and inspiration Search for items, brands and inspiration

Sale  Newin Clothing Shoes Accessories Activewear Face +Body Living + Gifts Brands Outlet Marketplace Inspiration Sale  Newin Clothing Shoes Accessories Activewear Face +Body Living + Gifts Brands Outlet Marketplace Inspiration

Home > Men » Shoes, Boots & Trainers » Leather Boots & Shoes Home > Men > Shoes, Boots & Trainers » Shoes

Base london dansey formal Ted Baker Circass toe cap

shoes in black

£99.00

Free Shipping Worldwide*

shoes in black leather

L\
£65.00 \

> Amount: 62 photos
> Overlap: 3

Free Shipping Worldwide*
coLour: Black coLour: Black

SIZE: @ Find your Fit Assistont size SIZE: @ Find your Fit Assistant size

Please select v !
ADD TO BAG (v} >

Please select v

BT -

o WL 3

vioeo vioeo
This pre a: pping restrictions T s ping r ctions
I . 1 O .
. SIZING HELP SIZING HELP
till unsure what size fo get? Find your Still unsure what size fo gef? Find your
] recommended size or check out our size guide. ) recommended size or check out our size guide.
SHARE SHARE

> Cost: $0.10 + Toloka fee



Statistics over the whole pipeline

30 photos processed to find the substitute items and evaluate their
similarity

within 45 min on real performers

total cost: $2.15 + Toloka fee



Afterparty: upgrade your pipeline

To obtain more comprehensive data
> Use more item types at the same time

To reduce costs
> Use incremental relabeling aka Dynamic overlap

To improve quality

Use dynamic pricing

Add more Golden Sets and hints
Experiment with aggregation methods
Add training for performers

VoWV NV WV



APl of Yandex.Toloka

Allows you to automate all steps of our pipeline

Discover at: https://yandex.ru/dev/toloka/



Crowdsource all types of data

Search Relevance Moderation

Generation of content

Computer vision
Speech Technologies
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